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 Abstract  

LAND MARKETS UNDER STRESS: DETERMINANTS OF 
AGRICULTURAL LAND VALUE IN WARTIME UKRAINE 

 

by Yevheniia Mitriakhina  

 

Thesis Supervisor:     Professor Oleh Nivievskyi 

Ukraine’s market for the sale of agricultural land opened in July 2021, following 

the end of a long-standing moratorium. Less than a year later, the country faced 

a full-scale Russian invasion, introducing extraordinary uncertainty into the newly 

liberalized market. This thesis examines the determinants of agricultural land 

value in Ukraine during this period of transition and wartime disruption, 

including the anticipated second phase of land reform extending access to the 

market to legal entities in 2024. 

The analysis draws on a comprehensive dataset of verified transactions, with 

economic, spatial, and geographic variables constructed and merged at the plot 

level. A spatial hedonic pricing model is estimated, incorporating a spatial lag 

component to capture price interdependencies across neighboring areas. 

Results show that official administrative valuation is the strongest predictor of 

land price, reflecting the anchoring role of the price floor – one of the key market 

restrictions. Wartime transactions are associated with a 29% discount, while the 

2024 reform allowing legal entity participation in the market corresponds to a 

4.3% price premium. Other key determinants include proximity to urban centers, 

infrastructure access, land use classification, and distance from occupied 
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territories. The spatial lag term confirms significant spillover effects across the 

land market.  
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C h a p t e r  1  

INTRODUCTION 

Farmland is a critical asset in agricultural economies. It represents the majority of 

farm wealth and often serves as collateral for loans (Burns et al. 2018). As a result, 

understanding the determinants of farmland value is important for both market 

participants and policymakers. In other countries, farmland prices are shaped by 

economic conditions, land use regulations, and environmental factors, often 

following market trends.  

In Ukraine, however, the farmland market has been defined by institutional and 

political changes. The legacy of the Soviet land system, followed by the post-

Soviet redistribution of land rights and a moratorium on land sales from 2001 to 

2021, meant that private owners were unable to sell most of agricultural land for 

two decades. Although the moratorium was introduced as a temporary safeguard, 

it ended up limiting landowners’ ability to transfer property and discouraged long-

term investment (Deininger and Nivievskyi 2019). The 2021 reform, which 

allowed land sales to private individuals, and the second phase in 2024 that 

opened the market to legal entities (Deininger et al. 2024), marked the first real 

steps toward liberalization. But this process was interrupted by the full-scale 

Russian invasion in 2022, adding major uncertainty and physical disruption. As a 

result, land values in Ukraine reflect not just economic or environmental factors, 

but a combination of institutional transition and wartime conditions. 

This study develops a large-scale model for evaluating agricultural land in 

Ukraine, incorporating economic, geographic, and policy-related factors to 

provide a national-level analysis of land values. It focuses on the effects of spatial 

features, economic conditions, and regulatory interventions such as the legal price 

floor. In addition, the model captures how land valuation has been influenced by 
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the war and the second phase of land market liberalization, which opened the 

market to legal entities. By identifying the main determinants of land value, the 

study contributes to a broader understanding of farmland markets in transition 

economies and conflict-affected regions. The empirical analysis is conducted 

using spatial econometric techniques. 

This thesis is structured as follows: The introduction presents the research 

context, objectives, and hypotheses. Chapter 2 provides background information 

on Ukraine’s land market, including its history and current state. Chapter 3 

provides a review of the relevant literature. Chapter 4 outlines the methodology, 

focusing on the spatial econometric models employed to estimate the 

determinants of land value. Chapter 5 describes the data used in the analysis, 

detailing key variables, their transformations and their sources. Chapter 6 

presents the estimation results, interpreting the effects of the various factors on 

land prices. Finally, Chapter 7 concludes with a summary of findings and policy 

implications.  
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C h a p t e r  2  

BACKGROUND INFORMATION 

Since gaining independence in 1991, land market reform was a crucial stepping 

stone in transition from planned to market economy for Ukraine (Minich et al. 

2021). Following the dissolution of the Soviet Union, the Ukrainian government 

initiated a comprehensive transfer of property rights, redistributing 

approximately 31.5 million hectares of land to private individuals and local 

governments (Wengle, Dankevych, and Mamonova 2024). By 2017, over half of 

Ukraine’s land area—about 52.2%—had been privatized (Nizalov 2019). 

However, the sales of agricultural land became restricted under a moratorium 

that was meant to be a temporary solution, but lasted for 2 decades.  

The moratorium on agricultural land sales, introduced in 2001, became a 

significant source of inefficiency in Ukraine's economy (Deininger et al. 2024). 

While its original intent was to safeguard rural populations and avoid 

concentration of the land in few hands, the prolonged ban prevented landowners’ 

from fully utilizing their property rights. By restricting the sale of land, the 

moratorium discouraged investments, limited access to finance, and slowed 

productivity growth, undermining the potential of the agricultural sector to 

contribute to economic development of Ukraine. Halytsia, Nivievskyi, and 

Deininger (2022) estimate that the farmland sales moratorium reduced 

agricultural productivity growth in Ukraine by 54-57%, placing the sector on a 

lower long-term development trajectory. Its negative impact outweighed that of 

other policy constraints such as trade liberalization and agricultural tax benefits. 

Due to the nature of the sales ban, quantifying its impact from the empirical 

evidence is challenging. However, estimates from a study by Deininger and 

Nivyevskyi (2019) suggest that lifting the moratorium could trigger substantial 
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economic growth. In their analysis, under more liberal market conditions, where 

foreign and legal entity participation is allowed, Ukraine’s GDP could increase by 

up to $10.57 billion over a 3-5 year period. In scenarios with more restrictions, 

such as caps on land supply and limited foreign investment, the GDP increase 

would range between $5 and $8 billion.  

Lifting the moratorium would also trigger redistribution of the land. For many of 

the individuals who received or inherited agricultural land, farming was not a 

viable or desirable option. Instead, they leased their plots to agricultural 

producers, often for a fraction of the land’s potential value Ukraine. Payments 

for these leases were frequently made in kind—such as bags of grain or bottles 

of sunflower oil—rather than in monetary terms, further reducing the financial 

benefits for landowners (Minich et al. 2021).  In 2018, the European Court of 

Human Rights ruled that the moratorium violated property rights, emphasizing 

that no other Council of Europe state imposed such a blanket ban. The Court 

states that less restrictive measures, such as land ownership caps or targeted 

taxation, could have achieved similar goals while respecting the property rights 

of landowners (European Court of Human Rights 2018). 

Following a series of reforms, including the digitalization of the land cadastre, 

introduction of data exchange between the Cadastre and the Registry of Rights, 

granting notaries the authority to register land rights alongside state registrars, 

efforts to correct errors in the cadastre, and the transfer of state land to 

amalgamated communities, the land market for private individuals officially 

opened in June 2021. The reform was set to progress in two stages: in June 2021, 

the market opened for private individuals with a cap of 100 hectares per person. 

Starting in January 2024, legal entities are allowed to purchase up to 10,000 

hectares of agricultural land. Foreign individuals and firms with foreign capital 

are excluded from the market. Additionally, there is a price floor for buying land, 

set to the Normative Money Value calculated by the State Land Cadastre 
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(Wengle, Dankevych, and Mamonova 2024). In 2024, average appraised 

monetary value of arable land is 28,924 UAH per hectare (Center for Food and 

Land Use Research 2024). Current renters have a primary right to purchase the 

land they lease. Despite the remaining restrictions, the opening of the land market 

is a major milestone for Ukraine's land reform. 

Less than a year passed between the opening of the land market and Russia's full-

scale invasion of Ukraine. The opening of the market had been eagerly 

anticipated, with a survey conducted in May 2021 revealing that 7.4% of 

landowners planned to sell all or part of their land once the market was open 

(Foundation "Democratic Initiatives" and Razumkov Center 2021). Supply of 

land was anticipated to be between 2.3 and 3.1 million hectares, while demand 

from individuals involved in agricultural production was expected to be around 

1.1 million hectares (Deininger, Nizalov, and Nivyevskyi 2017). However, many 

potential sellers adopted a "wait and see" approach, anticipating rising land prices. 

In the first seven months of the market's opening before the invasion, only 

0.421% of agricultural land was traded. The Kharkiv region led the way, with over 

1% of its farmland sold, while other regions such as Rivne, Lviv, and Ivano-

Frankivsk saw minimal activity, with Ivano-Frankivsk registering just 0.083% of 

its farmland in circulation (KSE Agrocenter 2022). 

The full-scale invasion by Russia in February 2022 caused significant damage to 

Ukraine's agricultural sector. Key agricultural regions, such as Kherson and 

Zaporizhzhia, faced occupation, destruction of infrastructure, and disruption to 

planting and harvesting cycles.  Direct damages amounted to $8.7 billion, while 

indirect losses—including reduced crop and livestock production, logistics 

disruptions, and higher production costs—are estimated at $31.5 billion during 

the first year of invasion (KSE Agrocenter 2023).   
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The full-scale invasion of Ukraine disrupted the emerging agricultural land 

market. During March and April 2022, the market was closed as the government 

restricted access to the land ownership database. Operations resumed in May 

2022 under wartime regulations, but trade volume fell from approximately 10,000 

deals per month in 2021 to half that number due to the war. Regional patterns 

shifted, with trade volume collapsing in frontline regions while central Ukraine 

witnessed both relative price stability and, in some areas, significant price 

increases. The legal price floor prevented prices from dropping further in many 

regions (Matvieiev 2023).  

In 2024, Ukraine followed through with the second phase of the land reform, 

allowing legal entities to purchase agricultural land.  In Q3 2024, the market 

recorded 28,400 sales and purchase transactions covering 62,700 hectares—a 

29% increase in the number of transactions and a 39% rise in the area of land in 

circulation compared to the same period in 2023 (KSE Agrocenter 2024).  While 

transaction volumes remain below pre-invasion levels, the market has 

demonstrated steady growth during the 2022–2024 period. 
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C h a p t e r  3  

LITERATURE REVIEW 

The study of land value determinants has evolved with the increasing availability 

of data, allowing for more sophisticated analytical approaches beyond traditional 

rent-based theories. Contemporary research integrates agricultural and non-

agricultural factors, employing advanced econometric spatial modelling 

techniques to provide a more comprehensive understanding of land pricing 

dynamics. These advancements enable researchers to account for spatial 

dependencies and market heterogeneity, resulting in more accurate models. 

Ricardo’s theory of rent, remains foundational in understanding the determinants 

of land value. The theory suggests that land value is heavily influenced by its 

fertility, which in turn affects agricultural productivity. According to Ricardo, the 

more fertile land yields higher returns to its owner because it allows for greater 

agricultural output with fewer inputs. As a result, land with superior fertility tends 

to be more valuable in the market. Conversely, land that is less fertile or has 

poorer agricultural potential will yield lower returns, which is reflected in a lower 

market value. This difference in productivity across land types creates a rent 

differential, with more fertile land commanding higher prices (Clark 1973, 1–39). 

For the purposes of this study, the key takeaway from Ricardo’s rent theory is the 

importance of land fertility and location as determinants of land value. In the 

context of modern land markets, this principle suggests that the inherent 

characteristics of land—particularly its soil fertility—should be closely considered 

when developing predictive models for land price estimation.  

Rosen’s (1974) hedonic pricing model extends the theory of land value by 

recognizing that land and other goods are valued for their specific attributes, 

rather than a single inherent value. In this model, land prices are determined by 
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the implicit prices of various characteristics, such as soil quality, proximity to 

infrastructure, and environmental factors. These implicit prices are estimated 

through regression analysis, where the price of land is regressed on its attributes, 

allowing for the identification of how much consumers or investors are willing 

to pay for these characteristics. The hedonic model is commonly used in land 

valuation to assess the impacts of various factors such as accessibility, amenities, 

and land use. However, identifying the key determinants that reflect consumer 

preferences and market dynamics can be challenging.  

In modern empirical studies of agricultural land value, multiple agricultural and 

non-agricultural determinants are used. The study by Borchers, Ifft, and Kuethe 

(2014) concludes that a range of factors beyond traditional agricultural 

productivity influences agricultural land values. While the discounted stream of 

expected returns remains a central determinant, non-agricultural attributes such 

as development potential, proximity to amenities like hospitals and college 

campuses, and higher median household incomes in the area also significantly 

contribute to farmland market values. The study finds that development potential 

is particularly important in explaining land value. However, the authors also note 

a difference between agricultural and market values, suggesting that non-

agricultural factors might drive up land prices. If the ability to change land 

purpose from agricultural to suit for development is limited, like in Ukraine, these 

factors' impact may be diminished. 

Distance to urban centres is also often considered in the literature as a 

determinant for land value as cities offer both economic opportunities and access 

to resources, which can drive up demand for surrounding agricultural land. The 

study by Guiling, Brorsen, and Doye (2009) finds that urban proximity 

significantly impacts agricultural land values in Oklahoma. As expected, land 

prices decrease with greater distance from major cities. The influence of urban 

proximity has slightly expanded over time due to increased population and real 
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income. The key takeaway is that urban proximity is a valuable factor in 

determining land value, with real income and population size being the most 

influential elements. 

Factors included in the hedonic price model vary widely based on the country, 

type of agriculture, and data availability. For example, Huang et al (2006) in a 

study on Illinois farmland values uses county-level cross-section time-series data 

to incorporate variables such as land productivity, parcel size, improvements, 

urban-rural index, proximity to cities like Chicago, livestock production, 

population density, income, and inflation. Spatial and serial correlation 

components significantly improve the model, revealing that farmland values 

increase with soil productivity, population density, and income, while they 

decrease with parcel size, ruralness, and distance to urban centres. 

In addition to land characteristics, government agricultural policies play a 

significant role in determining farmland values. Weersink et al. (1999) find that in 

Ontario, government payments are capitalized into land prices differently than 

market-based returns. Using a present value model, they show that government 

subsidies are viewed as more stable and are discounted less than farm income. 

This suggests that policy stability plays a key role in farmland valuation.  

 Table 1 summarizes the most frequently used determinants in land valuation 

studies, offering an overview of the attributes that influence land prices. 
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Table 1. Land value determinants commonly used in the literature. 

Category Variable Expected Effect Studies 

Intrinsic 

characteristics 

Soil quality Positive impact of better soils. Breustedt and 

Habermann, 2008 

Topography Less challenging topography is more valuable. Kunwar and Bohara, 2017 

Parcel size Larger parcels are cheaper on average due to economies of 

scale. Some other studies also include fragmentation of 

neighboring plots as s complementing factor. 

Maddison, 2009 

Irrigation/ 

drainage 

Well-established irrigation\draining is more valuable. Kostov, 2009 

Share of arable land Other types of land (pastures, forests) are typically less 

valuable so share of arable land is positive.  

Borchers, Ifft, and Kuethe 

2014 
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Table 1 – Continued. 

Category Variable Expected Effect Studies 

 Value of amenities on the 

property 

Natural (e.g., rivers) amenities and farm structures are 

more valuable as they can generate additional revenue. 

Nilsson and Johansson, 

2013 

Climate  Depending on specification, as a rule - plots in harsh 

climates are less valuable. 

Kunwar and Bohara, 2017 

Accessibility Distance to major roads Proximity to roads and their quality have positive impact 

on land value. 

Marques and Telles, 2023 

Distance to amenities  Proximity to amenities (hospitals, colleges etc) has positive 

impact on land value. 

Borchers, Ifft, and Kuethe 

2014 

Distance to markets Positive impact on land value. Borchers, Ifft, and Kuethe 

2014 

Urban pressure Distance to major cities Positive impact on land value. Maddison, 2009 
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Table 1 – Continued. 

Category Variable Expected Effect Studies 

 Population in the area Positive impact on land value. Huang et al., 2006 

 Degree of urbanization Positive impact on land value. Marques and Telles, 2023 

Development potential Positive impact on land value. Nilsson and Johansson, 

2013 

Agricultural 

activity 

Share of different crops Depends on specification, location etc.  Marques and Telles, 2023 

Crop rotation Positive impact of more sustainable farming practices. Maddison, 2009 

Livestock density Depends on specification. Huang et al., 2006 

Indicator of rented or 

owner-cultivated 

Owner-cultivated plots are more valuable. Choumert, and Phélinas, 

2015 
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Table 1 – Continued. 

Category Variable Expected Effect Studies 

Policy based Zoning indicators If land is desirable for alternative uses (development), it is 

typically more expensive. 

Cotteleer et al., 2011 

Direct payments and other 

subsidies 

Positive impact on land value. Breustedt and 

Habermann, 2011 

Buyer/seller 

characterstics 

Indicators for forced 

sale/family sale 

Price depends on type of sale. Tsoodle, Golden, and 

Featherstone 2003 

Spatial/location Neighbouring rental and 

sales prices 

There’s positive spatial autocorrelation in prices Burnett, Lacombe, and 

Wallander, 2024 
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Table 1 – Continued. 

Category Variable Expected Effect Studies 

 Average income in the area  Positive impact on land value. Borchers, Ifft, and Kuethe 

2014 
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Research on land valuation in Ukraine is still in its early stages, as the market for 

agricultural land sales only opened in 2021 after a long-standing moratorium. 

Prior to this, most studies focused on rental rights transactions, examining lease 

prices as a proxy for land values. However, the availability of transaction data 

since market liberalization has sparked growing interest among researchers, 

leading to an increasing number of studies analysing land price determinants, 

valuation methods, and market efficiency. 

One of the most recent contributions in this field is the work by Deininger et al. 

(2024), which proposes a framework for land valuation and taxation in Ukraine.  

Their model estimates parcel-level land prices using fixed effects at the most 

granular administrative level with sufficient sales data. Key determinants include 

land use, soil quality (e.g., quantity of nitrogen, organic matter, pH), infrastructure 

access (distance to roads, railways, ports, and cities), and compliance with the 

minimum price floor. Results indicate that market prices are, on average, 33% 

higher than the official "normative monetary value", with greater disparities in 

western regions. War-time transactions see a 7–16% price drop, with an 

additional 2.5% decline in 2024. Cross-validation shows the model explains about 

50% of price variation, outperforming simpler averaging methods. The study 

highlights the feasibility of market-based mass valuation of agricultural land. 

While the fixed-effects model helps control for unobserved heterogeneity across 

regions, increasing the granularity of fixed effects—such as moving from oblast-

level to hromada- or rayon-level may absorb much of the spatial variation in land 

prices, making it difficult to identify broader spatial patterns. Moreover, they do 

not explicitly model spillover effects, meaning that dependence between 

neighbouring observations remains unaccounted for. If land values in one 

location are influenced by those in adjacent areas, failing to model these spatial 

interactions can lead to omitted variable bias and inefficient estimates. 
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Traditional econometric models often assume observations are independent, yet 

spatial dependence in land prices is well-documented (Anselin 2002). Spatial 

econometrics addresses this issue by explicitly modelling spatial interactions, 

recognizing that land values in one location influence, and are influenced by, 

those in nearby areas. Empirical studies confirm the presence of spatial 

autocorrelation in land price data, as well as spatial autocorrelation in error terms 

(Breustedt and Habermann, 2008). The omission of spatial dependence can lead 

to biased estimates and misinterpretation of key determinants. 

The literature offers several spatial econometric approaches to account for spatial 

dependence. The Spatial Lag Model (SLM) includes a spatially lagged dependent 

variable to capture direct spillover effects, while the Spatial Error Model (SEM) 

accounts for spatial dependence in unobserved factors (Anselin 2002). More 

advanced specifications, such as the Spatial Durbin Model, allow for flexible 

modelling of spatial interactions in independent variables. The choice of model 

depends on the nature of spatial dependencies present in the data, with empirical 

studies employing diagnostic tests such as Moran’s I to guide selection. 

A critical component of spatial models is the spatial weight matrix, which defines 

the structure of spatial relationships. The literature commonly employs 

contiguity-based matrices (e.g., simple adjacency or Queen and Rook) and 

distance-based matrices (e.g., k-nearest neighbours, inverse distance, neighbours 

within given radius) (Cotteleer, Stobbe, and van Kooten 2010). Maddison (2009) 

introduces spatio-temporal approach arguing that the price of a land plot is 

influenced by the neighboring plots, but only by those that were sold prior to it. 

Making the right choice is important as it influences both spatial lag specification 

and efficiency of a maximum likelihood estimator, however the procedure for 

choosing one is not established and case-specific (Anselin, 2002) (Griffith and 

Lagona, 1998).  
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KSE Agrocenter plays a key role in monitoring Ukraine's emerging agricultural 

land market. The KSE Agrocenter’s "Invincible Land" project provides monthly 

and quarterly reports on market trends, including transaction volumes, pricing, 

and regional patterns. It offers valuable data and analysis, addressing gaps in 

market monitoring and informing research and policymaking. 

To summarize, classical economic theories emphasize land fertility and 

agricultural productivity as primary determinants of land value. However, 

modern empirical studies highlight a broader set of factors, including non-

agricultural influences like urban proximity, development potential, and policy 

interventions. More recent studies incorporate spatial econometric techniques to 

address spatial dependencies in land markets, improving the accuracy of land 

value estimation. In the context of Ukraine, research on agricultural land value 

remains an emerging field, with ongoing studies examining market dynamics, 

policy effects, and external shocks, yet significant gaps remain in understanding 

spatial dependencies and price formation mechanisms. 
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C h a p t e r  4  

METHODOLOGY 

This study primarily follows the methodology outlined in Cotteleer, Stobbe, and 

van Kooten (2010), which applies spatial econometric techniques to hedonic 

pricing models of farmland values. Their approach is particularly relevant because 

it systematically examines the effects of alternative spatial weighting matrices and 

model specifications (e.g., inclusion of spatial components). While their analysis 

employs Bayesian model averaging to address model uncertainty, the present 

study focuses on the frequentist estimation of multiple spatial model types 

without incorporating the Bayesian component. The comparative evaluation of 

spatial weights and functional forms in Cotteleer, Stobbe, and van Kooten (2010) 

strongly informs the structure and diagnostics adopted here. 

In terms of the choice of determinants, the study draws on Deininger et al. (2024), 

whose analysis of land valuation and taxation in Ukraine uses land use structure 

and crop type distribution. Furthermore, the literature overview by Tavares, 

Tavares, and Santos (2022) offers a comprehensive summary of farmland value 

determinants and modeling practices, helping to ground this analysis within the 

broader body of land valuation research. The spatial error modeling approach of 

Borchers, Ifft, and Kuethe (2014) also helped inform the choice of explanatory 

variables, as their study includes several useful determinants of land prices. 

 

4.1. Notation 

Throughout the text,  denotes the price of land plot ,  is the matrix of 

explanatory variables,  is the -th column of  representing the -th feature, 

 is the estimated coefficient for ,  is the intercept, and  represents the 



19 

 

spatial weights matrix. The model specifications, including the notation and 

formulation, follow the framework from Rey, Arribas-Bel, and Wolf (2020). 

 

4.2. Spatial Error Model and Spatial Lag Model 

Spatial error model is employed to model spatial autocorrelation in the error 

terms, which accounts for unobserved factors that may affect land prices in 

neighbouring areas.  

In the general form it looks like  

 

(1) 

 (2) 

Where 

 

(3) 

 as the spatial autoregressive parameter, and the significant and positive value of 

it indicates positive spatial autocorrelation in the error terms, suggesting that 

unobserved factors influencing land prices are spatially correlated. This 

specification corrects for bias arising from omitted spatially correlated variables, 

improving model accuracy. 

Meanwhile, the spatial lag model (Kelejian and Prucha 1998) accounts for spatial 

dependence directly in the dependent variable by incorporating the spatial lag of 

the dependent variable, enabling us to capture the influence of land prices in 

adjacent locations. 
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In SLM: 

 

(4) 

The parameter  measures the strength of spatial dependence in land prices. A 

positive value of it indicates that higher land prices in neighbouring plots 

positively influence the price of land plot 𝑖, suggesting that spatial interactions, 

such as proximity to high-value land, play a significant role in determining land 

values.  

Combined spatial error and spatial lag model incorporates both treatments for 

spatial autocorrelations: 

 

 

(5) 

SEM and SLM are used to account for spatial autocorrelation in the error terms 

and dependent variable, respectively. In the case of OLS, spatial dependence 

between observations can lead to biased and inconsistent coefficient estimates. 

This bias arises because OLS assumes that the error terms are independent and 

identically distributed, but in the presence of spatial autocorrelation, errors in one 

observation may be correlated with errors in neighbouring observations. 

In this study, all three specifications—SEM, SLM, and SEM+SLM—will be 

estimated and compared. The objective is to assess which model most effectively 

captures spatial dependencies while retaining interpretability and predictive 

accuracy. The primary specification will be selected based on both statistical 
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performance and how clearly it attributes variation in land prices to observable 

explanatory variables. 

 

4.3. Cross-Validation and Model Stability 

To assess the generalizability and stability of the model, a five-fold cross-

validation procedure will be conducted. In each fold, the dataset will be split into 

training and test sets. A new k-nearest neighbors spatial weights matrix will be 

constructed using the coordinates of both training and test observations. The 

spatial lag of the dependent variable will be computed using this matrix, but only 

training observations will be used in the calculation to prevent label leakage. The 

resulting spatial lag term will be included as a covariate in the regression model. 

Model performance will be evaluated using pseudo R-squared, mean absolute 

error (MAE), and root mean squared error (RMSE), while coefficient stability 

across folds will be tracked to confirm consistency in parameter estimates. 

 

4.4. Weights Matrix Specification 

The spatial weights matrix W is constructed using k-nearest neighbors with k=10 

for computational efficiency. This approach connects each observation to its 10 

nearest neighbors, and the matrix is row-standardized to ensure each row sums 

to one. The choice of k=10 for the k-nearest neighbors spatial weights matrix 

was made based on is based on preliminary experimentation; alternative values 

of k yielded similar model performance. k=10 provided a good balance between 

capturing spatial structure and maintaining computational efficiency. This is 

consistent with Cotteleer et al. (2010), who found that varying k between 5 and 

10 had little impact on results. 
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4.5. Software and Tools 

The analysis was conducted using Python 3.11, the spreg package (version 1.8.2) 

from PySAL (version 25.1), and GeoPandas for working with geometries. Python 

ensures efficient handling of large datasets, while spreg supports the GMM for 

estimating spatial models, including both spatial error and spatial lag components. 

GeoPandas was used to handle spatial data and perform spatial joins of different 

datasets and geometric operations. 
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C h a p t e r  5  

DATA DESCRIPTION 

The primary dataset used in this study is obtained from the State Service of 

Geodesy, Cartography, and Cadaster of Ukraine1. It contains comprehensive 

information on all transactions involving agricultural land, including sales, gifts, 

inheritance transfers, exchanges, and corporate contributions. The dataset has 

been collected since July 1, 2021, and is updated bi-weekly. It includes key details 

such as land area (in hectares), agreement type, transaction price, ownership type, 

registration date, and valuation of the land plot. The data is provided in tabular 

format and is compiled based on interactions between the State Land Cadaster 

and the State Register of Property Rights. 

The dataset covers only agricultural land (category code "100") and includes 

transactions recorded through various legal agreements, such as sale and purchase 

contracts, gift agreements, and inheritance transfers. Each land parcel is linked to 

its respective administrative unit using KOATUU codes, allowing for geographic 

classification. For the purposes of further analysis, only sale agreements are 

considered, and all other types of transactions are filtered out.  

Price reporting is not mandatory, leading to some missing values in the 

transaction price variable. The total percentage of missing prices across the 

dataset is 18.78%. However, nearly all missing values are concentrated within the 

first six months of market operation. The percentage of missing prices is generally 

consistent across regions, with the exception of Luhansk (64.7%) and Kherson 

(49.7%), which exhibit significantly higher proportions of missing data. In the 

 

1 Available at: https://land.gov.ua/monitorynh-zemelnykh-vidnosyn/  

https://land.gov.ua/monitorynh-zemelnykh-vidnosyn/
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remaining regions, the percentage of missing prices tends to range between 10% 

and 30%.  

Figure 1 shows the distribution of missing values over time. As the missing prices 

are heavily concentrated in the early months, these entries are omitted from the 

analysis for the sake of clarity. Additionally, valuations are missing for certain 

transactions, and these are also excluded, as they represent a crucial determinant 

for the model. By excluding transactions with missing prices and losing about 

1,000 transactions per month due to missing valuations, the dataset goes from 

332 to 235 thousand records. The remaining dataset is still large enough to ensure 

the analysis is reliable and robust. 

 

 

Figure 1. Distribution of missing prices and valuations over time aggregated by month. 

 

The majority of land plots in the dataset are quite small, with the largest 

concentration of plots under 5 ha, as shown in the histogram below. The boxplot, 

shown in Figure 2, zoomed in on land areas under 120 ha, reveals presence of 

larger plots. The largest plot size is around 227 ha. This indicates a presence of 

larger transactions alongside the majority of smaller plots.  
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Figure 2. Distribution of land plot area 

 

For a small subset of land plots, reported area values were corrected using the 

area derived from cadastral polygon geometry. Corrections were applied under 

specific conditions: when discrepancies between sources were extreme, or when 

one source appeared implausible (e.g., cadastral area above 370 hectares or 

polygon area below 0.1 ha). When the two sources closely matched, the original 

cadastral value was retained. 

All prices and valuations that are originally provided in UAH have been adjusted 

for inflation using the monthly Consumer Price Index (CPI) data from SSSU2 to 

ensure consistency over time. Additionally, prices have been normalized by 

dividing them by the corresponding corrected land area, allowing for a more 

accurate comparison across plots of different sizes. Figure 3 illustrates the median 

monthly price per hectare of agricultural land, shown in both nominal terms (blue 

 

2 Consumer Prices Index https://www.ukrstat.gov.ua/imf/arhiv/isc_e.htm  

https://www.ukrstat.gov.ua/imf/arhiv/isc_e.htm
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line) and inflation-adjusted terms (orange line). While the nominal price exhibits 

an upward trend with fluctuations, the inflation-adjusted price remains relatively 

stable after an initial decline. This suggests that the apparent price growth over 

time is largely driven by inflation rather than an actual increase in land value.  

 

 

Figure 3. Median price of land plot per hectare aggregated by month. 

 

While NMV can be interpreted as a binding price floor for agricultural land 

transactions, this does not apply uniformly across the dataset. In practice, the 

floor is set only for land plots allocated in kind to owners of land shares (паї), and 

does not extend to all ownership types or transaction contexts. Exceptions 

include state or communal land, as well as land sold at auction, where prices are 

based on expert valuation and competitive bidding. As a result, some observed 

prices fall below the corresponding NMV—not due to data errors, but due to the 

distinctions in land use purpose and ownership form.3 

 

3 Written response from the State Service of Geodesy, Cartography, and Cadaster to author's 
inquiry, April 2025. 
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The dataset includes fields for 'Region', 'District', and 'Settlement'. However, due 

to inconsistencies in the records, we use the KOATUU classification to construct 

the full address of the administrative unit each land plot belongs to. We then 

extract the geographic coordinates of these addresses using the HERE API4, 

resulting in 5,187 unique addresses. Administrative unit may be a village or a city. 

It is not fully synonymous with hromada - multiple administrative units may 

belong to the same hromada. 

Figure 4 displays the geographic distribution of all land plots, with markers 

indicating each administrative unit where transactions occurred. Marker size 

reflects the number of transactions associated with each unit. As shown, land 

plots are heavily concentrated in central Ukraine, highlighting a higher volume of 

transactions in this region relative to others. 

Whenever possible, the location of the land plot is refined to be more accurate 

using cadaster resources5. It contains geographic polygons with the exact 

locations of land plots. However, it is important to note that it does not contain 

information on all land plots, about 6.6% of land plots are missing. If the exact 

coordinates are missing, the coordinates of the administrative centre of the 

respective KOATUU are applied instead.  

 

4 HERE API Geocoding https://geocode.search.hereapi.com/v1/geocode 

5https://kadastr.live/api/parcels/ 
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Figure 4. Distribution of plot locations with transactions count. 

 

To improve the performance of k-nearest neighbours computations, jittering is 

applied to the coordinates assigned from administrative centres. Jittering 

introduces small, random perturbations to these coordinates, preventing multiple 

land plots from being assigned identical locations. This adjustment helps avoid 

artificial clustering effects that could distort distance-based spatial analysis and 

ensures that k-NN methods operate more effectively. 

To account for the impact of hostilities on land transactions, areas of conflict 

were identified using data from the DeepState6. Each area is represented by a 

collection of polygons and categorized into three types: areas occupied since 

2014, areas occupied between 2022 and 2025, and areas liberated since 2022. 

Based on these polygons and the locations of land transactions, two sets of spatial 

features were computed for each conflict category: (1) the closest distance from 

each land plot to the nearest polygon of the given type and (2) the average 

 

6DeepState Map of hostilities -  https://deepstatemap.live/#6/49.4383200/32.0526800  

https://deepstatemap.live/#6/49.4383200/32.0526800
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distance from each land plot to all polygons of that type. All distances are 

measured in kilometers. These features help capture the potential influence of 

proximity to conflict zones on land values and transaction dynamics. 

To incorporate community-level characteristics, data from the KSE-Loc-Data-

Hub7  project were joined based on a spatial join (point of land plot is within 

hromada polygon). This dataset provides detailed geographic and administrative 

information at the hromada (amalgamated community) level, including 

boundaries, governance details, population statistics, infrastructure availability, 

and socio-economic indicators. Key features extracted include community type, 

population size and distribution, access to transportation, administrative 

classifications, education performance (e.g., Ukrainian External Independent 

Evaluation scores), youth and entrepreneurship support structures (e.g., number 

of youth centers, councils, and entrepreneurial support centers), healthcare 

coverage (e.g., number of health facility declarations). The dataset also includes 

information on tax revenues, financial capacity assessments, project costs 

financed by the State Regional Development Fund, and the status of war zones. 

The Harmonized World Soil Database8 was used to determine the predominant 

soil type at each location. The soil type was identified using the WRB2 

classification and the HWSD1_SMU_ID, referred to further as soil name and soil 

type, respectively. Each soil mapping unit (HWSD1_SMU_ID) may represent a 

mix of soil types, so the classification with the highest share (WRB2) was selected 

as the dominant soil. While this data has potential to be useful, the nominal 

valuation already includes the soil bonitet coefficient, so its contribution will be 

evaluated at a later stage.  

 

7 https://github.com/kse-ua/KSE-Loc-Data-Hub 

8 https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-

database-v20/en/ 
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Additional spatial features are determined using the OpenStreetMaps9, including 

count of water features, distance to the nearest primary and secondary roads, 

density of all roads and paved roads in particular within 10 kilometres of land 

plot’s centroid.  River count reflects the proximity to water sources, while 

distance to road measures accessibility. Detailed description of these features 

extraction is provided in Appendix B. 

To characterize land use composition at the plot level, high-resolution crop 

classification maps developed by Kussul, Lavreniuk, Skakun, and Shelestov 

(2017) were used. These maps were generated using multitemporal satellite 

imagery, combined with a deep learning framework that integrates both spectral 

and spatial features for pixel-level classification. The dataset enables detailed 

identification of major land cover types and crops, and is used here to quantify 

the share of cultivated land, built-up areas, water, and uncultivated base land for 

each plot. Technical details are provided in Appendix C. 

Time-based features include year, month, week of the year, and day of the month 

for each transaction, along with their corresponding sin-cos transformations to 

capture cyclical patterns. All time-based features are calculated based on the 

RegistrationDate column. Additionally, two binary variables are included: is_war, 

which indicates whether the transaction occurred after February 24, 2022, 

marking the start of the full-scale war, and is_legal_market, which indicates 

whether the transaction date is after January 1, 2024, when legal entities were 

allowed to access the market.  

For outlier treatment, 1 and 99 percentiles by price per hectare and valuation per 

hectare are filtered out. Table 2 presents descriptive statistics of the variables used 

in analysis. 

 

9 https://export.hotosm.org/v3/exports 



31 

 

 

Table 2. Descriptive statistics of selected variables 

 mean median std min max 

distance_to_kyiv_log 5.580 5.673 0.540 2.393 6.543 

distance_to_obl_center_log 4.063 4.177 0.673 0.636 5.442 

LandAreaHa_log 1.097 1.099 0.582 0.000 5.432 

ValuationPerHectar_log 9.646 9.877 0.672 7.234 10.797 

is_war 0.818 1.000 0.385 0.000 1.000 

is_legal_market 0.481 0.000 0.500 0.000 1.000 

distance_to_eu_log 5.436 5.659 1.031 0.343 6.800 

income_log 11.022 11.052 0.859 8.710 15.721 

mountain_hromada 0.015 0.000 0.123 0.000 1.000 

near_seas 0.014 0.000 0.118 0.000 1.000 

urban_pct 0.302 0.310 0.267 0.000 1.000 

population_2022_log 9.613 9.620 0.816 7.492 14.167 

inter_area_mount 0.007 0.000 0.068 0.000 2.734 

inter_area_sea 0.018 0.000 0.177 0.000 3.866 

percent_crops 0.780 1.000 0.369 0.000 1.000 

percent_forest 0.020 0.000 0.107 0.000 1.000 
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Table 2 – Continued. 

 mean median std min max 

percent_built_up 0.014 0.000 0.105 0.000 1.000 

percent_grassland 0.121 0.000 0.285 0.000 1.000 

percent_water 0.008 0.000 0.066 0.000 1.000 

is_not_cultivated 0.033 0.000 0.178 0.000 1.000 

log_count_water_features 3.956 3.951 0.928 0.000 7.088 

log_dist_to_primary_km 2.524 2.674 0.933 0.000 4.446 

log_dist_to_secondary_km 2.113 2.222 0.808 0.012 4.239 

edprou_indicator 0.105 0.000 0.306 0.000 1.000 

paved_road_density 0.134 0.096 0.169 0.000 2.994 

road_density 0.716 0.571 0.590 0.000 7.598 

log_closest_dist_to 

_occupied_km 

4.565 5.304 2.312 0.000 6.962 

is_urban_hromada 0.324 0.000 0.468 0.000 1.000 

has_water 0.038 0.000 0.192 0.000 1.000 

no_primary_road_within_10k 0.013 0.000 0.115 0.000 1.000 

distance_to_hromada 

_center_log 

2.303 2.368 0.573 0.026 3.858 
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Table 2 – Continued. 

 mean median std min max 

hromada_area_log 6.102 6.158 0.674 2.625 7.823 

purpose_commercial_farm 0.011 0.000 0.106 0.000 1.000 

purpose_commodity_farm 0.437 0.000 0.496 0.000 1.000 

purpose_gardening 0.012 0.000 0.107 0.000 1.000 

purpose_other 0.301 0.000 0.459 0.000 1.000 

Quarter_2 0.184 0.000 0.388 0.000 1.000 

Quarter_3 0.231 0.000 0.422 0.000 1.000 

Quarter_4 0.305 0.000 0.461 0.000 1.000 

PricePerHectar_adjusted 34572.2 23676.5 44793.4 1514.9 742735.3 

ValuationPerHectar_adjusted 18412.7 19484.1 8921.8 1384.6 48876.6 

 

Full list of features used in the models, with source and description is provided 

in Appendix A. 

In the final analytical sample, only transactions with cadastral (plot-level) 

coordinates were retained. This decision reflects the fact that certain spatial 

variables—particularly those derived from high-resolution crop classification 

maps and OpenStreetMap—are not meaningful when applied to jittered 

administrative coordinates. While the model could in principle be re-estimated 

using the full sample with KOATUU-based locations, doing so would require 
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excluding these spatially granular features. Restricting the analysis to plots with 

known cadastral coordinates ensures greater spatial precision and validity in 

distance-based computations and spatial econometric modeling. 
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C h a p t e r  6  

ESTIMATION RESULTS 

6.1. Diagnostic tests 

Global spatial autocorrelation in land prices is confirmed by Moran’s I, which 

yields a value of 0.496 (p = 0.001). This indicates a strong and statistically 

significant tendency for similar land prices to cluster geographically. The presence 

of positive spatial dependence justifies the use of spatial econometric models over 

conventional OLS. To further explore the spatial structure of the data, local 

indicators of spatial association (LISA) are computed. A map of resulting clusters 

is presented in Figure 5. 

 

 

Figure 5. Local Indicators of Spatial Association. 

 

Local Indicators of Spatial Association reveal substantial regional clustering in 

land prices. High-price clusters (HH) are prominently concentrated in the 
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western and central regions, while low-price clusters (LL) dominate parts of the 

north and northeast. Scattered outliers also appear, such as high-price parcels 

surrounded by low-price areas (HL) and vice versa (LH), although these are 

relatively infrequent. A large portion of the country shows no statistically 

significant clustering (ns), especially in the south and parts of the east, likely 

reflecting lower transaction density or more heterogeneous pricing. Overall, 

15.2% of observations fall into HH clusters, 17.2% into LL, 2.6% into LH, 3.0% 

into HL, while the majority (62.1%) show no statistically significant local spatial 

autocorrelation. While Moran’s I confirms strong and statistically significant 

global spatial dependence in land prices, the LISA results reveal that this 

dependence is concentrated in specific regions, indicating that local clustering is 

present but spatially uneven and limited in overall scope. 

A spatial weights matrix was constructed using the k-nearest neighbours 

algorithm with 𝑘=10, assigning each observation its ten geographically closest 

neighbours. The resulting graph contains no isolated observations (islands), but 

is not fully connected: it consists of 24 weakly connected components. The 

largest component includes over 210,000 observations, while the remaining 503 

are distributed across smaller disconnected clusters. This structure is a result of 

spatial fragmentation in areas with low transaction density, and it does not affect 

model estimation, as the main component dominates the dataset. 

As shown in Figure 6, the disconnected observations fall into two broad 

categories. Some are located in mountainous or sparsely populated areas in the 

northwest, where limited local transactions naturally restrict spatial connectivity. 

Others are situated in the eastern and southern regions, where transactions 

effectively ceased following the start of the full-scale invasion in February 2022. 

These disconnected clusters reflect either long-standing geographic isolation or 

the impact of war on market activity, rather than data quality issues. 
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Figure 6. Disconnected observations in the k-NN spatial weights matrix. 

 

6.2. Estimates for SEM, SLM and Combo models 

Table 3 reports coefficient estimates for the spatial lag, spatial error, and 

combined models. All three specifications are estimated on the same dataset using 

an identical set of explanatory variables and an identical k-nearest neighbors 

spatial weights matrix. Coefficients are reported alongside z-statistics, with 

significance levels denoted by asterisks ((***) p < 0.01, (**) p < 0.05, p (*) < 0.1). 
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Table 3. Estimates of SLM, SEM and combined models 

Variable Coefficient 
Combo 

z-Statistic 
Combo 

Coefficient Lag z-Statistic Lag Coefficient SEM z-Statistic SEM 

CONSTANT 4.4975 (***) 49.277 4.3804 (***) 54.483 5.7526 (***) 107.679 

distance_to_eu_log -0.0438 (***) -17.299 -0.0427 (***) -17.609 -0.0459 (***) -17.820 

distance_to 
hromada_center log 

-0.0306 (***) -9.549 -0.0304 (***) -9.542 -0.0307 (***) -9.595 

distance_to_kyiv_log -0.1591 (***) -44.372 -0.152 (***) -44.760 -0.1656 (***) -45.136 

distance_to_obl 
_center_log 

-0.032 (***) -11.415 -0.0298 (***) -10.771 -0.0331 (***) -11.756 

edprou_indicator 0.3686 (***) 70.468 0.3666 (***) 71.288 0.3698 (***) 70.235 

has_water -0.1051 (***) -10.625 -0.1083 (***) -10.860 -0.1047 (***) -10.628 

hromada_area_log -0.0914 (***) -24.750 -0.0905 (***) -24.761 -0.0932 (***) -25.141 

income_log 0.1135 (***) 20.017 0.1258 (***) 22.613 0.1119 (***) 19.612 

inter_area_mount -1.2703 (***) -37.287 -1.2674 (***) -37.150 -1.2697 (***) -37.330 

inter_area_sea -0.2148 (***) -12.425 -0.2175 (***) -12.547 -0.214 (***) -12.404 

is_legal_market 0.0436 (***) 9.431 0.0425 (***) 11.394 0.0578 (***) 11.141 

is_not_cultivated -0.4223 (***) -32.521 -0.4376 (***) -33.560 -0.4161 (***) -32.131 

is_urban_ 
hromada 

-0.0135 (***) -2.877 -0.0074 -1.589 -0.0158 (***) -3.357 

is_war -0.3533 (***) -22.461 -0.341 (***) -23.130 -0.3701 (***) -22.702 

lambda 0.2293 
   

0.3388 
 

LandAreaHa_log -0.0986 (***) -29.449 -0.0973 (***) -29.265 -0.0976 (***) -29.078 

log_closest_dist 
to_occupied_km 

0.0658 (***) 24.191 0.0639 (***) 24.547 0.0682 (***) 24.597 
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Table 3 – Continued. 

Variable Coefficient 
Combo 

z-Statistic 
Combo 

Coefficient 
Lag 

z-Statistic 
Lag 

Coefficient 
SEM 

z-Statistic 
SEM 

log_count_water_features 0.045 (***) 23.166 0.0436 (***) 22.781 0.0461 (***) 23.609 

log_dist_to_primary_km 0.0131 (***) 7.490 0.0143 (***) 8.212 0.0128 (***) 7.264 

log_dist_to_secondary_km 0.0144 (***) 7.196 0.0169 (***) 8.479 0.014 (***) 6.978 

mountain_hromada 1.4939 (***) 75.760 1.4889 (***) 75.534 1.4995 (***) 76.090 

near_seas 0.3824 (***) 14.434 0.3864 (***) 14.661 0.3804 (***) 14.341 

no_primary_road_within_10k -0.0687 (***) -5.255 -0.0722 (***) -5.609 -0.0687 (***) -5.225 

Ownership Cooperative 1.7478 (***) 25.106 1.703 (***) 25.396 1.7973 (***) 25.442 

Ownership Private -0.124 (***) -3.164 -0.1296 (***) -3.316 -0.1256 (***) -3.205 

Ownership StateCommunal 0.019 (***) 4.677 0.021 (***) 5.318 0.018 (***) 4.369 

paved_road_density 0.0204 1.335 0.0496 (***) 3.285 0.0089 0.577 

percent_built_up 0.0445 (**) 2.432 0.0287 1.558 0.0468 (**) 2.564 

percent_crops -0.5901 (***) -46.961 -0.6064 (***) -48.091 -0.5841 (***) -46.587 

percent_forest -0.3788 (***) -20.599 -0.3955 (***) -21.441 -0.3735 (***) -20.359 

percent_grassland -0.5294 (***) -40.070 -0.551 (***) -41.530 -0.5228 (***) -39.670 

percent_water -0.4038 (***) -13.057 -0.4193 (***) -13.474 -0.3984 (***) -12.930 

population_2022_log -0.0191 (***) -2.674 -0.0324 (***) -4.610 -0.0154 (**) -2.138 

Purpose Commercial farm 0.0545 (***) 3.653 0.0571 (***) 3.836 0.0539 (***) 3.610 

Purpose Commodity farm 0.1418 (***) 34.744 0.1447 (***) 35.860 0.1411 (***) 34.435 

Purpose gardening 0.9302 (***) 61.335 0.9199 (***) 60.774 0.9319 (***) 61.454 

Purpose other 0.0548 (***) 12.359 0.0545 (***) 12.708 0.0559 (***) 12.457 
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Table 3 – Continued. 

Coefficient Combo z-Statistic Combo Coefficient Lag z-Statistic Lag Coefficient SEM z-Statistic SEM  

Quarter_2 0.0041 0.724 0.004 0.896 0.0055 0.830 

Quarter_3 0.033 (***) 6.196 0.0332 (***) 7.936 0.0393 (***) 6.421 

Quarter_4 0.013 (***) 2.579 0.013 (***) 3.286 0.0133 (**) 2.305 

road_density 0.0969 (***) 19.400 0.0952 (***) 19.197 0.0977 (***) 19.516 

sale_order 0.0604 (***) 6.418 0.058 (***) 6.314 0.0589 (***) 6.210 

urban_pct -0.1122 (***) -12.010 -0.1144 (***) -12.380 -0.1145 (***) -12.211 

ValuationPerHectar_log 0.5469 (***) 209.180 0.5457 (***) 207.801 0.5486 (***) 210.055 

W_Log Land Price 0.1228 (***) 16.253 0.1295 (***) 19.927 
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Table 4 reports model fit statistics for the three model specifications. All three 

spatial models show reasonable overall fit on the dataset, with pseudo R² values 

ranging from 0.3421 to 0. 3563. Contrary to expectations, the Spatial Lag Model 

achieves the highest pseudo R² (0. 3563), along with the highest spatial pseudo 

R² (0. 343), indicating that it explains the most variance of the three. The Spatial 

Error Model follows with a pseudo R² of 0. 3421, while the combined GM 

Combo model performs similarly in this comparison, with a pseudo R² of 0. 3556 

and a spatial pseudo R² of 0. 3428. These results suggest that, despite its additional 

complexity, the Combo model does not offer a meaningful gain in explanatory 

power. 

 

Table 4. Model fit comparison. 

Model Pseudo R-

squared 

Spatial Pseudo R-

squared 

Spatial Lag 0.3563 0.343 

Spatial Error 0.3421 - 

GM Combo 0.3556 0.3428 

 

A reassuring finding is that the vast majority of coefficients are stable and 

significant across SEM, SLM, and the combined model. 42 out of 45 predictors 

are statistically significant (p < 0.05) in each model specification, indicating a 

robust set of core drivers. Key variables like distance to Kyiv, land area, land 

valuation per hectare, war impact, income levels, indicator for mountain region, 

etc., have very similar coefficients and z-statistics across all three models. This 

consistency suggests that the relationships in the data hold regardless of how 

spatial autocorrelation is modelled.  
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That said, there are a few notable differences in coefficient significance that show 

the trade-offs between models. One such difference is the variable for paved road 

density: in the SLM it appears positive and significant, but in the SEM and 

combined model it drops out as insignificant. This suggests that in a pure lag 

model, road density was picking up some spatially correlated effect (perhaps 

regions with better roads also had higher prices), but once spatial error correlation 

is accounted for (SEM/Combo), that effect is no longer distinct. 

 In contrast, the “urban hromada” dummy shows the opposite pattern – it is 

insignificant in the SLM, but becomes significant (with a small negative 

coefficient) in the SEM and even in the Combo model. This implies that the 

SLM’s spatial lag term may have been absorbing some of the effect of urban 

status (since neighboring areas often share urban/rural characteristics), whereas 

the SEM/Combo isolating spatial error allowed the urban influence to emerge. 

Another small difference is seen in the built-up area percentage: it is only 

borderline significant in the combined model and not in SLM, but reaches 

significance in SEM, hinting that controlling for spatial errors might reflect subtle 

effects of land use type.  

Crucially, no major coefficient flips sign or drastically changes magnitude 

between the models. The few variables that switch significance are those with 

relatively marginal effects to begin with. The primary drivers remain solid across 

all specifications, showing that the core inferences are robust to model choice. 

This boosts confidence that whichever model is chosen, the main findings (e.g., 

the impact of distance, war, valuation, etc.) are reliable.  

The Spatial Lag Model is selected as the preferred specification due to a 

combination of empirical performance and interpretability. While it achieves the 

highest pseudo R² and spatial pseudo R² among the three models, the decision is 

not based on fit alone. The estimated coefficients in the SLM are stable, 
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significant, and broadly consistent with those from the SEM and combined 

models. Importantly, the SLM preserves interpretability for key structural 

variables without absorbing their explanatory power into the spatial error term, 

as observed in the Combo model. Moreover, the lag specification aligns with 

theoretical expectations of spatial spillover in land prices and is supported by 

diagnostic tests, which point to substantive spatial interaction rather than 

unobserved spatially correlated shocks. Taken together, these factors suggest that 

the SLM offers a robust and transparent representation of spatial dependencies 

in the data, making it the most suitable choice for the analysis. 

 

6.3. K-fold cross-validation 

To assess the robustness and generalizability of the model, a five-fold cross-

validation procedure was conducted. The model demonstrates consistent out-of-

sample performance across folds, with an average R² of 0.356 (SD = 0.0022), 

mean absolute error (MAE) of 0.487 (SD = 0.0016), and root mean squared error 

(RMSE) of 0.671 (SD = 0.0024), as illustrated in Table 5 Coefficient estimates 

remain highly stable in both sign and magnitude across folds.  

Figure 7 illustrates the range of estimated coefficients for each variable, showing 

that no signs are reversed and variation remains minimal even for variables with 

weaker effects. This confirms that the SLM generalizes well and captures 

structural relationships in the data. 
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Table 5. Model errors across cross-validation folds. 

Fold Pseudo R² MAE RMSE 

1 0.3572 0.4865 0.6695 

2 0.3581 0.4844 0.6666 

3 0.3567 0.4892 0.6734 

4 0.3518 0.4875 0.6718 

5 0.3561 0.4881 0.6716 

Average 0.3560 0.4871 0.6706 

 

 

Figure 7. Coefficients mean and range across folds. 
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6.4. Discussion of determinants 

The results from the spatial lag model reveal a rich structure of factors influencing 

agricultural land prices in Ukraine.  

As expected, location is quite important. Prices are significantly higher in areas 

closer to Kyiv and oblast centers, consistent with greater economic integration, 

market activity, and infrastructure concentration. Among all geographic 

indicators, distance to Kyiv has the largest effect: a 1% increase in distance from 

the capital is associated with a 0.152% decrease in land price. Prices also decline 

with greater distance to oblast centers and hromada centers, with effects of 

−0.0298% and −0.0304% per 1% increase in distance. Land closer to the EU 

border is also more expensive; a 1% increase in distance from the border 

corresponds to a 0.043% decrease in price, possibly reflecting expectations of 

future integration or trade opportunities in the western regions. 

One of the most consequential variables in the model is is_war, which captures 

whether the transaction took place after the start of the full-scale invasion on 

February 24, 2022. The estimated effect is substantial: land sold during the 

wartime period is priced nearly 29% lower than land sold before. This sharp 

discount reflects the profound uncertainty and disruption introduced by the war. 

Beyond immediate risks to property and personal safety, buyers face heightened 

concerns about future accessibility, and the long-term viability of agricultural 

activity both in affected regions and in the rest of the country.  

In addition, land farther from occupied territories is more valuable. Each 1% 

increase in distance from the frontline raises price by 0.064%. This effect 

becomes substantial over Ukraine’s geographic scale, as land plots located 

hundreds of kilometers from the frontline can be valued significantly higher than 

similar plots situated closer. The pattern likely reflects how buyers assess a broad 

set of war-related risks—from direct strikes and infrastructure damage to the 
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threat of renewed hostilities. In this way, the war has reshaped the land market 

not only through physical destruction, but through the risk environment. 

The model confirms that the official valuation per hectare is a strong predictor 

of land price. This likely reflects the dual role of formal valuation: not only does 

it anchor price expectations, but it also is a binding price floor for most 

transactions. The coefficient implies that a 1% increase in valuation is associated 

with approximately a 0.55% increase in actual land price, underscoring how 

closely market outcomes follow this administrative formula. 

Two variables in the model capture the effect of legal entity participation in the 

land market. The first, is_legal_market, indicates whether the transaction took 

place after January 1, 2024, when legal entities were officially allowed to buy land. 

The second, edprou_indicator, flags whether the transaction actually involved a 

legal entity, based on the presence of a EDRPOU code. Both variables are 

positively associated with land price. Transactions that occurred after the reform 

are priced approximately 4.3% higher than those that took place earlier. This 

suggests that the policy change had an effect on the market, possibly by raising 

demand or altering expectations, even for plots that were not purchased by legal 

entities. 

The effect is stronger when the buyer is a legal entity. The presence of an 

EDRPOU number is associated with a 44.3% increase in price compared to 

transactions involving individuals. This substantial difference likely reflects the 

types of plots that legal entities target—often larger, more investment-oriented, 

or located in more desirable areas. It may also signal a greater willingness to pay, 

especially for land intended for commercial or strategic use. Together, these 

results show that the entry of legal entities into the market has not only expanded 

the buyer base but has shifted the pricing structure of agricultural land. 
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Several variables describe characteristics of the hromada to which each plot 

belongs. Among them, average income has the strongest effect: a 1% increase in 

hromada income is associated with a 0.13% increase in land price, indicating that 

buyers are willing to pay more in areas with stronger economic conditions. In 

contrast, hromada population has a slight negative effect: a 1% increase in 

population corresponds to a 0.032% decrease in price. This may reflect land 

structure in more densely populated areas, where parcels tend to be smaller or 

more fragmented. Hromada area also matters. A 1% increase in total area is 

associated with a 0.09% decrease in price, possibly because larger hromadas are 

more rural and less economically concentrated. A 10 percentage point increase in 

the urban population share corresponds to a 1.14% decrease in land price, 

suggesting that more urbanized hromadas have less demand for agricultural land. 

The model identifies strong location premiums for plots in designated mountain 

or coastal hromadas. Land in mountain areas is priced approximately 343% 

higher than elsewhere. This large premium likely reflects the unique features of 

mountain regions: recreational or tourism value, constrained land supply, or 

alternative uses beyond standard agriculture. A similar, though smaller, pattern 

holds for coastal areas. Plots near seas are priced approximately 47.2% higher 

than inland plots, possibly due to natural amenity value or better access to 

transportation infrastructure. Coastal proximity, especially near ports, may 

facilitate exports and thus attract buyers engaged in commercial agriculture. 

The model shows that larger land parcels tend to be valued less per hectare. 

Specifically, a 1% increase in area is associated with a 0.1% decrease in price. This 

pattern is common in land markets and may reflect several factors, including 

reduced per-hectare demand for large holdings, limited pool of potential buyers, 

or economies of scale. 
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The model also includes interactions between plot size and location in mountain 

or coastal areas. These interactions are both negative, indicating that the price 

penalty for larger plots is even steeper in these regions. These results suggest that 

while small plots in scenic areas may have a premium, that premium does not 

scale with size. Larger parcels in such locations may be harder to sell or valued 

less because they exceed what typical buyers—especially private individuals or 

small investors—are looking for. 

The variable sale_order captures how many times a parcel has changed hands and 

reveals a clear upward trend in prices across repeated transactions. Each 

additional sale raises the price by about 5.8%, compounding over time—second 

sales are roughly 6.2% higher than first, third sales 12.7%, and so on. Due to 

transaction costs involved, it is likely that only a selected few land plots re-enter 

the market in the studied period and they have other favorable attributes, such as 

good location, legal clarity, or investment potential. This pattern might also point 

out to selection and learning effects in the land market. Prices may rise simply 

because more is known about the land. Early transactions often happen under 

uncertainty—about boundaries, ownership, or productivity. As these frictions 

resolve, subsequent buyers are willing to pay more. In some cases, speculative or 

institutional buyers purchase land specifically to resell it.  

The significant spatial lag term (ρ = 0.13) shows that land prices are influenced 

by nearby values: plots tend to be more expensive if their neighbors are. In 

addition to direct effects, the spatial lag model shows meaningful indirect 

effects—spillovers transmitted through the land market via the prices of 

neighboring plots. Since spatial dependence in the model is defined using a 10-

nearest-neighbors matrix, these effects do not follow administrative boundaries 

but are instead based on physical proximity between plots. That is, changes in 

one parcel’s characteristics or context can influence land prices in the 
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surrounding ten geographically closest parcels, regardless of whether they fall 

within the same hromada or oblast. 

For example, both the normative valuation and the edprou indicator exhibit 

meaningful indirect effects. The positive indirect effect of the normative 

valuation (0.0812) suggests that high-valued plots tend to be located near other 

high-valued plots. Similarly, the edprou_indicator—which identifies transactions 

involving legal entities—has an indirect effect of 0.0545, implying that 

institutional purchases are associated with higher prices not only for the 

transacted plot but also for nearby parcels. Full table of indirect effects is 

provided in Appendix E. 

Accessibility remains a clear determinant. Road density—both paved and total—

is positively associated with land value. Conditional on overall road density, the 

model finds that greater distance to primary and secondary roads is linked to 

slightly higher land prices: a 1% increase in distance corresponds to price 

increases of approximately 0.014% and 0.016%, respectively. This 

counterintuitive result likely reflects the structure of the model, where road 

density already captures the general level of accessibility. What remains is the 

marginal effect of being near a major road, which may correlate with land 

fragmentation, pollution, or other externalities that can depress the value of 

agricultural land. 

In this sense, while being in a well-connected area is clearly beneficial, direct 

adjacency to a primary or secondary road may not add value—and may even 

reduce agricultural suitability due to competing land uses or smaller parcel sizes. 

Moreover, the absence of a primary road within 10 km lowers land price by about 

7% on average. 

Official land use purpose has an effect on price, even after controlling for plot 

characteristics. The base category is personal farming, which includes subsistence 
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or household-scale agricultural use. Compared to this group, plots designated for 

gardening are valued approximately 151% higher per hectare — a striking 

premium that likely reflects their location near settlements, smaller size, and the 

possibility that they already contain mature or planted gardens, making them 

immediately usable.  

Land classified for commodity farming is priced approximately 15.6% higher 

than personal-use land. These parcels are likely oriented toward commercial-scale 

crop production, making them more attractive to larger or professional buyers. 

Land intended for commercial farming, a more general category, is valued about 

5.9% higher. 

The model also captures differences in land prices based on ownership type, 

using farm enterprises as the reference category. Land owned by private 

individuals is sold at prices approximately 12.2% lower, a difference that may 

reflect smaller average plot sizes, lower bargaining power, or differences in how 

these parcels enter the market. In contrast, state or communal land sells for about 

2.1% more than land owned by farm enterprises. This modest premium may stem 

from auction-based procedures or stricter valuation protocols tied to public 

ownership. 

The most striking result is the estimated 449% premium for land owned by 

cooperatives. While the magnitude is large, it must be interpreted with caution. 

This estimate is based on only 109 transactions and may reflect outliers or atypical 

cases—such as institutional restructuring, high-value land transfers, or 

transactions involving strategically located plots.  

Seasonal effects are also present but modest: prices in the third quarter are about 

3.4% higher, and in the fourth quarter about 1.3% higher, relative to the first 

quarter, possibly reflecting timing around harvests or annual land market activity 

cycles. 
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Water-related features show mixed effects on land prices, depending on their 

form and proximity. Land plots with water features directly on-site are priced 

approximately 10.3% lower, possibly reflecting marshy conditions, flood risk, or 

regulatory restrictions on land use. In contrast, a greater number of water features 

within a 10 km radius is associated with higher prices: a 1% increase in nearby 

water bodies raises land value by about 0.044%. This suggests that while excess 

water on a plot can be a liability, nearby access to water may enhance value 

through scenic amenities or improved conditions for irrigation. 

The model includes land cover features based on satellite crop classification data 

from summer 2023. While these variables offer detailed spatial coverage, their 

interpretation should be approached with caution. Plots identified as not 

cultivated or bare land—are priced about 35% lower. Other land cover shares, 

including crops, forest, grassland, and water, are also linked to lower prices. For 

example, a 10 percentage point increase in cropland share is associated with a 

roughly 5.9% price decrease. Taken individually, these effects might reflect real 

market preferences or specific local constraints. But taken together, the pattern 

is puzzling: all coefficients are negative, suggesting that no combination of land 

covers leads to a price premium. 

This raises the possibility that the model’s linear structure is too rigid to capture 

how land composition affects value. In reality, small amounts of forest or water 

might add scenic or practical value, while larger shares could reduce usability. 

Similarly, a plot dominated by crops might be productive but also carry risks tied 

to monoculture or irrigation needs. The timing of the satellite snapshot is another 

limitation—it doesn’t match the full transaction period (2021–2025), so some 

land use changes may be missed. Classification noise, especially on small plots, 

adds further uncertainty. In short, while these features bring valuable spatial 

detail, their combined interpretation is likely distorted by nonlinearity, timing 

mismatches, and measurement issues. These results should be treated with 
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caution and may benefit from robustness checks using alternative specifications 

or better-aligned land use data. 

The spatial lag model shows that land prices in Ukraine are driven less by any 

single factor and more by the interaction of institutional, spatial, and market 

forces. Rather than reflecting pure productivity or location, prices follow patterns 

shaped by policy constraints, geography, and uneven accessibility. Administrative 

valuation continues to act as a price anchor, while land reforms have raised the 

market price for everybody. Spatial patterns reflect both exposure to conflict and 

access to markets — but not all infrastructure delivers value equally. What 

matters is not just being close to roads, but being embedded in a broader network. 

Plot-level characteristics, too, are interpreted through context: size, land cover, 

and use designation affect price in ways that reflect not just utility but regulation, 

scarcity, and local demand. While land prices are still shaped by state-set 

benchmarks, differences in location, legal rules, and market expectations are 

starting to matter more — showing that the market is slowly becoming more 

responsive and dynamic. 

 

6.5. Comparison with existing literature 

The most closely related study is the land valuation model developed by 

Deininger et al. (2024) for the World Bank, which uses the same core dataset. 

While the modeling approach differs, many of the variables overlap, allowing for 

meaningful comparison. The World Bank study models log land price per hectare 

in USD, whereas this study uses inflation-adjusted UAH. Although differences 

in currency and deflation methods may affect coefficient magnitudes, the signs 

and statistical significance of many variables remain broadly comparable. 

A notable discrepancy concerns the coefficient values associated with parcel area. 

The World Bank model includes both log area and its square, with both 
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coefficients positive. This implies that prices increase with size at an increasing 

rate—an implausible result that contradicts standard economic intuition and 

empirical evidence. Moreover, the estimated coefficients are implausibly large: 

the log area terms range from approximately 11 to 15, and the squared terms 

exceed 30 across all specifications. By contrast, this study finds a negative 

elasticity of −0.1, consistent with the typical pattern of decreasing per-hectare 

prices for larger plots, reflecting economies of scale. 

Both models identify a strong negative effect of war, though the magnitude 

differs: this study estimates a price drop of nearly 29% for post-invasion 

transactions, while the WB model reports a smaller effect (~6–17%). This 

discrepancy likely arises from different model controls. The WB study includes 

year dummies that may absorb part of the war effect, whereas this model isolates 

war onset more explicitly. 

Some variable definitions also differ. In this model, road accessibility is measured 

using both road density and the presence of nearby roads, and distance to them. 

This may explain the positive association between road distance and price—an 

effect that could reflect disamenities such as fragmentation or pollution—

whereas the World Bank model, which relies solely on distance-to-road measures, 

reports the expected negative relationship. 

Another divergence concerns repeated transactions. The present model finds a 

strong and significant price premium for resales—approximately 5.8% per 

additional transaction—whereas the WB effect is weaker and significant only in 

the pooled specification. 

While the World Bank model includes a dummy for the year 2024, which 

coincides with the start of the second stage of land reform, it does not isolate the 

reform effect. The estimated coefficient for 2024 in their model is negative 

relative to the base year 2021, though it is smaller in magnitude than the 
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coefficients for 2022 and 2023. In contrast, this model includes two reform-

specific variables: one indicating whether the transaction occurred after the 

market opening for legal entities, and another identifying legal entity buyers. The 

results suggest that the reform is associated with a 4.3% increase in prices, and 

that transactions involving legal entities are priced 44% higher than those 

involving individuals—evidence of a substantial structural shift in market 

behaviour not separately captured in the other specification. 

Soil quality features also differ between the models. The WB study includes 

granular indicators like pH and acidity, while this study excludes soil type after 

robustness tests. These variables were found to be either insignificant or 

redundant, likely because bonitet—a composite measure of soil productivity—is 

already included in NMV. Moreover, soil variables likely exhibit non-linear effects 

that are poorly captured in linear models. Given the lack of expertise to interpret 

detailed soil measures metrics meaningfully, their inclusion in the model is not 

justified. 

Finally, while both studies include land use and land cover controls, crop map-

derived features that yield more coherent effects in the WB model. This study 

faces interpretability issues likely due to timing mismatches, measurement error, 

and lack of functional thresholds. All land cover variables (crops, grassland, 

forest, etc.) yield negative coefficients, which is difficult to reconcile with 

expected market valuations. These results are acknowledged as tentative and may 

require future refinement using more flexible model structures or more granular 

data. 

Overall, while the two models differ in structure and scope, they converge on the 

importance of geography, and conflict exposure as key determinants of land 

price. This study also incorporates institutional and spatial dependencies not 
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covered by the World Bank analysis, offering an alternative view of market 

dynamics during a period of reform and instability. 

 

6.6. Directions for future research. 

While the selected model captures spatial dependencies in land prices, several 

limitations in the current specification suggest directions for future research. 

First, the spatial weights matrix used in this analysis is purely spatial and static. It 

does not incorporate the timing of transactions. In reality, land prices can only 

be influenced by past transactions, not future ones. A spatio-temporal weights 

matrix—where each observation is only influenced by earlier transactions within 

a spatial neighborhood—would better capture the directional nature of price 

spillovers. Using such a matrix would prevent the model from implicitly assuming 

symmetric influences over time. However, due to the size of the dataset, applying 

a spatio-temporal weights matrix would require custom algorithm 

implementation and optimized memory management beyond the scope of this 

study. 

Second, the analysis relies on a single k-nearest neighbors specification. While k-

NN offers computational efficiency, it may obscure relevant spatial structures in 

areas with variable settlement density. Alternative specifications, such as inverse 

distance matrices or contiguity-based weights, could reveal different spatial 

interaction patterns. Testing multiple matrix forms could improve the robustness 

of spatial effect estimates and help evaluate whether pricing spillovers are more 

localized or continuous. 

In addition, the effects of land cover variables derived from crop classification 

maps remain inconclusive. This suggests that the current specification—based on 

linear transformations of surface cover shares—may not adequately capture the 

complex relationship between land use and price. Future work should consider 
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refining the functional form, improving feature extraction methods or testing for 

nonlinear and interaction effects to better isolate the contribution of land cover 

to land valuation.  
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C h a p t e r  7  

CONCLUSIONS 

This study investigates the determinants of agricultural land prices in Ukraine 

using three spatial econometric models: a spatial lag model, a spatial error model, 

and a combined spatial autoregressive error model. All three confirm the 

presence of spatial dependence in land prices, but the spatial lag model is selected 

as the preferred specification due to its comparable performance and greater 

interpretability.  

Among all factors, wartime conditions exert the most pronounced negative 

effect. Transactions occurring after the beginning of the full-scale invasion are 

associated with a 28.9% price discount, reflecting direct risks and market 

uncertainty. Furthermore, each percentage increase in distance from occupied 

territories is associated with a 0.064% increase in land price, showing how 

proximity to conflict zones shapes spatial variation in land value. 

In contrast, the second stage of market reform in 2024 allowing legal entities to 

participate in the market is associated with a 4.3% increase in price, suggesting 

that demand-side pressure and increased competition are contributing to upward 

price movement in the post-reform period. When the buyer is a legal entity, the 

price premium rises sharply to 44.3%. These entities likely target more desirable, 

investment-oriented parcels, and their presence may increase competition or 

signal strategic value. Spatial lag effects further indicate that these premiums spill 

over to nearby plots, affecting local pricing dynamics. 

Normative Monetary Valuation, which serves as a legally binding price floor for 

most transactions, remains closely associated with observed market prices. A 1% 

increase in NMV is associated with a 0.55% increase in transaction price, 
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indicating that NMV continues to structure price formation. While the share of 

transactions occurring above the floor has increased—particularly following the 

2024 reform—NMV still acts as a strong reference point, especially in less liquid 

segments of the market. 

Sale order is positively associated with price: each additional transaction increases 

the price by approximately 5.8%, suggesting that parcels re-entering the market 

tend to have more favorable characteristics or benefit from reduced 

informational frictions over time. Beyond these effects, land prices are also 

systematically influenced by geographic and structural variables. Prices are lower 

for larger plots and for parcels located farther from Kyiv and oblast centers, 

consistent with scale effects and reduced accessibility. Additional factors such as 

land use designation, local income levels, and proximity to water and 

infrastructure also contribute meaningfully to price variation. 

These findings demonstrate that land values in Ukraine are shaped by both policy 

reform and conflict exposure, with legal market liberalization and wartime 

conditions exerting large and opposing effects on price. While reform efforts 

have expanded participation and stimulated price growth, the war has introduced 

spatially uneven risks that continue to suppress land values and limit liquidity. 
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Appendix A 

 

Table 6. Description of variables used in the model. 

Variable Source Description 

distance_to_hromada_ 

center_log 

Cadaster Open 
Data 

Log of distance (in km) from land plot 
centroid to the administrative center of 
the hromada. 

distance_to_kyiv_log Cadaster Open 
Data 

Log of distance (in km) from land plot 
centroid to Kyiv. 

distance_to_obl_ 

center_log 

Cadaster Open 
Data 

Log of distance (in km) from land plot 
centroid to the administrative center of 
the oblast. 

inter_area_mount Calculated Interaction calculated as log land area 
multiplied by mountain hromada 
indicator. 

inter_area_sea Calculated Interaction calculated as log land area 
multiplied by near seas indicator. 

has_water Cropmaps Indicator that water or wetland is present 
on the plot. 

is_not_cultivated Cropmaps Dummy variable equal to 1 if more than 
50% of the plot is classified as bare or 
uncultivated. 

percent_built_up Cropmaps Share of the plot area classified as 
artificial structures. 

percent_crops Cropmaps Share of the plot area classified as crops. 

percent_forest Cropmaps Share of the plot area classified as forest. 

percent_grassland Cropmaps Share of the plot area classified as 
grassland. 

percent_water Cropmaps Share of the plot area classified as water 
or wetland. 
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Table 6 – continued. 

Variable Source Description 

log_closest_dist_to 

_occupied_km 

Deepstate, calculated Log of the distance (in km) from the plot 
to the closest geo polygon identified is 
occupied. 

edprou_indicator Land monitoring 
relations 

Presence of EDPROU code for a 
transaction in the land monitoring 
dataset. Indicator of whether buyer is a 
legal entity. 

is_legal_market Land monitoring 
relations 

Dummy variable indicating if the 
transaction occurred after legal entities 
were allowed to purchase land (post-
2024). 

is_war Land monitoring 
relations 

Dummy variable indicating whether the 
transaction occurred after the start of the 
full-scale invasion (February 24, 2022). 

LandAreaHa_log Land monitoring 
relations 

Log of the land area of the plot in 
hectares. 

OwnershipType Land monitoring 
relations 

Dummy variables for ownership form: 
Cooperative, Private, State/Communal. 
Base category: Farm Enterprise. 

LandPurpose Land monitoring 
relations 

Dummy variables for land use purpose. 
Categories: Commercial Farming, 
Commodity Farming, Gardening, Other. 
Base category: Personal Farming. 

Quarter Land monitoring 
relations 

Number of the quarter when the 
transaction takes place. 

sale_order Land monitoring 
relations 

Order of sale transaction for plots that 
are traded repeatedly. Range: 1-4 

ValuationPerHectar
_log 

Land monitoring 
relations 

Log of the official normative monetary 
valuation per hectare of the plot adjusted 
for inflation by CPI. 
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Table 6 – continued. 

Variable Source Description 

log_dist_to_ 

primary_km 

OSM Log of distance (in km) from land plot 
centroid to the closest primary road. 

log_dist_to_ 

secondary_km 

OSM Log of distance (in km) from land plot 
centroid to the closest secondary road. 

no_primary_road 

_within_10k 

OSM Indicator that there is not primary road 
within 10 km of land plot centroid. 

paved_road 

_density 

OSM Index of paved road density within 10 
km radius. 

road_density OSM Index of all road density within 10 km 
radius. 

distance_to 

_eu_log 

Repository of 
Hromada-Level 
Data in Ukraine 

Log of distance (in km) from the 
hromada center to the nearest point on 
the EU border. 

hromada_area_log Repository of 
Hromada-Level 
Data in Ukraine 

Log of total land area of the hromada in 
square kilometers. 

income_log Repository of 
Hromada-Level 
Data in Ukraine 

Log of hromada-level tax revenue per 
capita; based on 2021 values for 
transactions before 2022 and 2022 values 
otherwise. 

is_urban_hromada Repository of 
Hromada-Level 
Data in Ukraine 

Dummy variable equal to 1 if the 
hromada is officially classified as urban. 

mountain_hromada Repository of 
Hromada-Level 
Data in Ukraine 

Dummy variable equal to 1 if the 
hromada is officially classified as 
mountanous. 
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Table 6 – continued. 

Variable Source Description 

population_ 

2022_log 

Repository of 
Hromada-Level 
Data in Ukraine 

Log of population of hromada in 2022. 

urban_pct Repository of 
Hromada-Level 
Data in Ukraine 

Percent of urban dwellers in hromada. 
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Appendix B 

OpenStreetMap (OSM) data were used to extract spatial features describing the 

physical and infrastructural context surrounding each cadastral land plot. The 

data were downloaded using the HOT Export Tool and manually configured to 

include relevant geographical feature types. 

Unlike the cropmaps, which were processed using a high-resolution grid, the 

OSM data were exported as 17 manually defined large tiles. Each tile was sized 

to ensure complete coverage of Ukraine with adequate buffer zones and to 

guarantee the inclusion of all relevant nodes, ways, and relations necessary for 

constructing full road and waterway geometries. 

Three geometry layers were included in each .gpkg tile: 

- planet_osm_line: for roads, railways, and waterways 

- planet_osm_polygon: for water bodies and terminal buildings 

- planet_osm_point: for ferry terminal point features 

The export was filtered using SQL-like WHERE clauses. Key selections included: 

- Roads: highway IS NOT NULL 

- Railways: railway IS NOT NULL 

- Waterways: waterway IN ('river', 'canal', 'stream') 

- Water bodies: natural='water'  

- Transport nodes: amenity='ferry_terminal', building='ferry_terminal', 

building='train_station' 

For each tile line geometries were filtered to extract road segments, classified by 

highway=*, and paved/unpaved status determined via surface=*. Polygon and 

line geometries were also used to identify water bodies, rivers, and streams. Points 
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and polygons representing transport terminals were retained for potential 

accessibility analysis. Geometries were converted to EPSG:4326, validated, and 

merged into a single feature set. Duplicate osm_ids and overlapping geometries 

across tiles were removed during pre-processing. 

All spatial metrics were calculated using the centroids of cadastral plots as 

reference points. The following metrics were derived: 

- Count of water features: For each centroid, a 10 km buffer was created. 

All OSM features tagged as water-related (e.g., natural=water, 

waterway=river, canal, stream) that intersected the buffer were counted. 

Only distinct geometries were counted per centroid. 

- Distance to primary road: The minimum Euclidean distance from the 

centroid to the nearest road with highway tag equal to 'primary' or 

'primary_link'. Only roads with valid geometries were considered. 

- Distance to secondary road: As above, but using highway tags 'secondary' 

and 'secondary_link'. 

- Road density: The total length of all roads (from the list of known 

highway types) intersecting the 10 km buffer was calculated. These 

lengths were summed and divided by the area of the buffer to yield a road 

density in kilometers per square kilometer (km/km²) 

- Paved road density: A subset of the roads identified above was selected 

based on the surface tag. Roads whose surface matched a predefined list 

of paved types (e.g., asphalt, concrete, paving_stones) were included. 

Their total length was divided by the buffer area, as above. 

Some limitations apply. Tag completeness and geometric detail in OSM vary 

across regions. In rural or sparsely mapped areas, surface=* may be missing, 
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which can lead to underestimation of paved road access. The analysis does not 

account for road condition, width, or seasonal accessibility. 

To verify the spatial accuracy and interpretability of the derived metrics visual 

verification was conducted for a subset of land plots.  Two random examples are 

provided below (Figure 9). Each example overlays the following elements on a 

map: 

- The centroid of the land plot (red marker) 

- A 10 km buffer around the centroid (grey outline) 

- All intersecting road segments (coloured by surface type: black for paved, 

orange for unpaved) 

- All intersecting water features (blue lines or polygons) 

 

 
Figure 8. Example land plots with 10 km buffer and extracted spatial features. 

 

  

Plot A has denser paved road 
network and more water features. 

Plot B has some secondary roads but 
only 1 primary in the buffer zone. 
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The maps are accompanied by the corresponding metric outputs for each plot 

(Table 7), including the cadastral number, geographic coordinates, water feature 

count, distances to primary and secondary roads, and computed road density. 

These examples serve to confirm that the spatial joins and buffer operations 

were executed correctly and illustrate how different landscape contexts result in 

varying metric values, and provide qualitative validation of the paved/unpaved 

classification logic applied to road surfaces. 

 

Table 7. OSM features for random plots 

 

  

Feature name Value for Plot A Value for Plot B 

Cadastral Number 2624487200:02:004:0061 3223386800:03:004:0007 

Longitude 24.535021 31.743323 

Latitude 49.414926 50.143198 

count_water_features 211 47 

dist_to_primary (meters) 2907.392838 30529.35463 

dist_to_secondary (meters) 7181.236311 13556.2649 

road_density 1.078643 0.436514 

paved_road_density 0.21623 0.074923 
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Appendix C 

This appendix describes the procedure used to extract crop classification data 

from the publicly available "2023-summer" layer hosted at ukraine-

cropmaps.com via a WMS service. 

The spatial extent of the cadastral dataset was used to define the bounding box 

for downloading cropmap tiles. A 0.1° buffer was added to each side of the 

bounding box to ensure coverage at the edges. The territory was divided into tiles 

of 0.25° × 0.25°, resulting in approximately 2,600 tiles. 

Each tile was requested using the WMS GetMap endpoint with the following 

settings: CRS:84, Format: image/png, Image size: 1024 × 1024 pixels. 

This corresponds to a ground resolution of approximately 22–25 meters per 

pixel, depending on latitude. Each pixel represents ~498 m². Each cadastral plot 

was matched to the tile it intersects. The tile image was loaded and the plot 

rasterized onto the same grid. Pixels within the masked region were extracted and 

classified into crop types based on predefined RGB-to-category mappings. The 

output was a per-plot percentage breakdown of dominant land cover types.  

The selected resolution provides sufficient detail for identifying dominant land 

use types in plots ≥1 hectare. Smaller plots may be underrepresented, especially 

in sparsely covered or mixed-use areas. Some plots near borders may not have 

the most accurate breakdown as it is averaged between the breakdowns from 

multiple tiles without regard for proportion of the plot that belongs to each tile. 

The classification includes a range of agricultural crops, natural land covers, and 

built-up areas. The full list of categories available in the dataset is as follows: 

Wheat, Rapeseed, Buckwheat, Maize, Sugar beet, Sunflower, Soybeans, Barley, 

Peas, Alfalfa, Potato, Grape, Other crops, Not cultivated, Grassland, Forest, 
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Damaged forest, Wetland, Water, Gardens and parks, Bare land, and Artificial 

surfaces.   

For about 2,400 plots (1.1% of all plots), no matching crop categories were 

identified in the rasterized cropmap layer. Inspection suggests that many of these 

plots are small (<0.5 ha), and their footprint intersects only a few pixels in the 

cropmap raster. At the chosen resolution (~498 m² per pixel), such plots may fall 

between classified areas or be dominated by edge effects, leading to missing or 

unmatched crop assignments.  

To simplify analysis, the detailed cropmap categories were grouped into broader 

land use indicators. First, all crop-related percentages (such as wheat, sunflower, 

and maize) were summed to calculate the total share of cultivated land in each 

plot, stored as percent_crops. Forested areas, grasslands, and artificial surfaces 

were kept as individual features and renamed to percent_forest, 

percent_grassland, and percent_built_up. Water-related land types (Water and 

Wetland) were combined into a single variable, percent_water, and a binary 

indicator has_water was added to flag plots where any water was present. 

Similarly, a variable called is_not_cultivated was defined to identify plots where 

more than 50% of the area was labeled as either Not cultivated or Bare land. 

Summary statistics of features derived from cropmaps are shown in Table 8. 

Figure 9 illustrates tile #904. The full tile is shown on the right; the left panel 

displays a cropped version highlighting a single land plot with its rasterized mask 

overlaid (gray fill with red border). The plot is approximately 2 hectares in size 

and corresponds to 43 pixels at the current resolution. It is classified as 100% 

sunflower crops. 
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Table 8. Summary statistics of crop features at plot level. 

 Percent 

crops 

Percent 

forest 

Percent 

grassland 

Percent 

water 

Has 

water 

Percent 

built up 

Is not 

cultivated 

mean 0.766 0.021 0.128 0.009 0.04 0.017 0.033 

std 0.379 0.112 0.293 0.07 0.196 0.117 0.177 

 

  

Figure 9.  Example of a cropmaps tile. 
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Appendix D 

Table 9. Data Sources 

Name  Link  Description 

Land monitoring 

relations 

https://land.gov.ua/monitor

ynh-zemelnykh-vidnosyn/  

Main dataset used in the analysis. Contains 

detailed records of land transactions, including 

sale prices, plot characteristics, ownership types, 

and land use purposes. Regularly updated as part 

of Ukraine’s national land monitoring system. 

DeepState 

Occupied 

Territories 

https://deepstatemap.live/  Live conflict tracker used to extract polygon 

boundaries of occupied territories. Provides 

geospatial data on frontline dynamics, which was 

used to compute distances from land plots to the 

nearest occupied area. 

Repository of 

Hromada-Level 

Data in Ukraine 

https://github.com/kse-

ua/KSE-Loc-Data-Hub  

KSE-Loc-Data-Hub is an open-access repository 

developed by the Kyiv School of Economics that 

provides comprehensive hromada-level data in 

Ukraine. It includes administrative, demographic, 

economic, and geospatial datasets, along with 

analytical scripts and visualizations. The 

repository supports research on decentralization 

reforms (2014–2022) and community resilience 

during the Russian invasion.  

 

 

 

 

 

 

https://land.gov.ua/monitorynh-zemelnykh-vidnosyn/
https://land.gov.ua/monitorynh-zemelnykh-vidnosyn/
https://deepstatemap.live/
https://github.com/kse-ua/KSE-Loc-Data-Hub
https://github.com/kse-ua/KSE-Loc-Data-Hub
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Table 9 – Continued. 

Name  Link  Description 

Crop Maps https://ukraine-

cropmaps.com/  

Used to identify land cover and dominant 

agricultural use on each plot. Provides satellite-

derived classifications for cropland, forest, 

grassland, water, and bare land, used to construct 

plot-level land use features. 

OpenStreetMap https://export.hotosm.org/v

3/  

Used to extract infrastructure and accessibility 

features, including road networks and nearby 

amenities. Data was used to calculate road 

density, distance to roads, and presence of key 

infrastructure within defined radii around each 

plot.  

Harmonized 

World Soil 

Database 

https://www.fao.org/soils-

portal/data-hub/soil-maps-

and-databases/harmonized-

world-soil-database-v20/en/  

Used to assign dominant soil type and 

classification to each plot. Provides standardized 

global data on soil properties, used here primarily 

for categorical soil indicators such as fertility class 

and WRB classification. 

Cadaster Open 

Data 

https://kadastr.live/  Data on exact coordinates and polygons of land 

plots. 

 

  

https://ukraine-cropmaps.com/
https://ukraine-cropmaps.com/
https://export.hotosm.org/v3/
https://export.hotosm.org/v3/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en/
https://kadastr.live/
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Appendix E 

 

Table 10. Indirect effects in SLM model. 

Variable Direct Indirect Total 

distance_to_kyiv_log -0.152 -0.0226 -0.1746 

distance_to_obl_center_log -0.0298 -0.0044 -0.0342 

LandAreaHa_log -0.0973 -0.0145 -0.1117 

ValuationPerHectar_log 0.5457 0.0812 0.6269 

is_war -0.341 -0.0507 -0.3917 

is_legal_market 0.0425 0.0063 0.0488 

distance_to_eu_log -0.0427 -0.0063 -0.049 

income_log 0.1258 0.0187 0.1445 

mountain_hromada 1.4889 0.2214 1.7103 

near_seas 0.3864 0.0575 0.4439 

urban_pct -0.1144 -0.017 -0.1314 

population_2022_log -0.0324 -0.0048 -0.0372 

inter_area_mount -1.2674 -0.1885 -1.4559 

inter_area_sea -0.2175 -0.0323 -0.2498 

percent_crops -0.6064 -0.0902 -0.6966 

percent_forest -0.3955 -0.0588 -0.4544 

percent_built_up 0.0287 0.0043 0.033 

percent_grassland -0.551 -0.0819 -0.6329 
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Table 10 - Contimued. 

Variable Direct Indirect Total 

percent_water -0.4193 -0.0624 -0.4816 

is_not_cultivated -0.4376 -0.0651 -0.5027 

log_count_water_features 0.0436 0.0065 0.05 

log_dist_to_primary_km 0.0143 0.0021 0.0164 

log_dist_to_secondary_km 0.0169 0.0025 0.0194 

edprou_indicator 0.3666 0.0545 0.4211 

paved_road_density 0.0496 0.0074 0.057 

road_density 0.0952 0.0142 0.1093 

log_closest_dist_to_occupied_km 0.0639 0.0095 0.0734 

is_urban_hromada -0.0074 -0.0011 -0.0085 

has_water -0.1083 -0.0161 -0.1244 

no_primary_road_within_10k -0.0722 -0.0107 -0.083 

distance_to_hromada_center_log -0.0304 -0.0045 -0.0349 

hromada_area_log -0.0905 -0.0135 -0.1039 

sale_order 0.058 0.0086 0.0667 

purpose_commercial_farm 0.0571 0.0085 0.0656 

purpose_commodity_farm 0.1447 0.0215 0.1662 

purpose_gardening 0.9199 0.1368 1.0567 

purpose_other 0.0545 0.0081 0.0626 

Ownership_Private -0.1296 -0.0193 -0.1489 
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Table 10 – Continued. 

Variable Direct Indirect Total 

Ownership_Cooperative 1.703 0.2532 1.9562 

Ownership_StateCommunal 0.021 0.0031 0.0241 

Quarter_2 0.004 0.0006 0.0046 

Quarter_3 0.0332 0.0049 0.0382 

Quarter_4 0.013 0.0019 0.0149 

 


