THE EFFECT OF THE WAR ON MARKET PRICES IN METALLURGY SECTOR.

by

Yehor Vasyliev

A thesis submitted in partial fulfillment of the requirements for the degree of

MA in Business and Financial Economics

Kyiv School of Economics

2023

Thesis Supervisor: _____ Professor Oleg Nivievskyi

Approved by _____

Head of the KSE Defense Committee, Professor [Type surname, name]

Date _____

TABLE OF CONTENTS

Chapter 1. INTRODUCTION	
Chapter 2. INDUSTRY OVERVIEW AND RELATED STUDIES	7
Charper 3. METHODOLOGY	
Chapter 4. DATA	
Chapter 5. RESULTS	
Chapter 6. CONCLUSIONS AND RECOMMENDATIONS	
ANNEX 1	
ANNEX 2	
ANNEX 3	
ANNEX 4	
ANNEX 5	

LIST OF FIGURES AND TABLES

Figure 1. Autocorrelation functions for nominal metal prices with Bartlett 95%
standard errors
Figure 2. Global prices of the metals in the years 2013-2023, % to 2012 (the yellow
area shows the first 4 months of the war) 16
Figure 3. Export prices of the metals in Ukraine in the years 2013-2023, % to 2012
(the yellow area shows the first 4 months of the war)18
Figure 4. Import prices of the metals in Ukraine in the years 2013-2023, % to 2012
(the yellow area shows the first 4 months of the war)18
Figure 5. Terms of trade of the metals in Ukraine in the years 2013-2023, % to 2012
(the yellow area shows the first 4 months of the war)19

Table 1. Levels of Significance of Metal Price Regression Coefficients (Global	
Market and Exports of Ukraine)	21
Table 2. Levels of Significance of Metal Price Regression Coefficients (Ukraine's	
Imports and Terms of Trade)	. 22

Chapter 1. INTRODUCTION

1.1 Background

The war in Ukraine had an impact not only on the Ukrainian economy, but also on global markets. Commodity markets reacted strongly to the beginning of the war. Prices in the metal markets also showed sharp dynamics. There is no doubt among economists that oil and gas prices have changed significantly due to geopolitical factors, but there is no consensus on the dynamics of metal prices. Therefore, there is a problem of determining the statistical significance of the impact of war on metal prices.

1.2 Purpose

The purpose of this thesis is to identify the statistical impact of the fact of the beginning of the war between Russia and Ukraine on the prices of three metals: aluminum, iron ore and copper. For this purpose, global metal prices, as well as Ukrainian export and import prices and their ratio (terms of trade) should be analyzed.

The thesis proposes the following four hypotheses:

Hypothesis 1. The start of the Russian-Ukrainian war on February 24, 2022 had a statistically significant impact on world metal prices (aluminum, iron ore, copper).

Hypothesis 2. The start of the Russian-Ukrainian war on February 24, 2022 had a statistically significant impact on Ukrainian export prices of metals (aluminum and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of the Classifier of Foreign Trade of Ukraine, respectively).

Hypothesis 3. The start of the Russian-Ukrainian war on February 24, 2022 had a statistically significant impact on Ukrainian export prices of metals (aluminum and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of the Classifier of Foreign Trade of Ukraine, respectively).

Hypothesis 4. The start of the Russian-Ukrainian war on February 24, 2022 had a statistically significant impact on the tirms of Ukraine's trade in metals (aluminum and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of the Classifier of Foreign Trade of Ukraine, respectively).

1.3 Methodology

Time series research methods are used to test the stated hypotheses. Using time series decomposition in the dynamics of metal prices, an outlier corresponding in time to the beginning of the war is identified. After removing the trend component and the cyclical component from the time series, the irregular component and the war beginning outlier remain in the time series. Identification of the trend component and cyclic component is performed using moving average smoothing. The stationarity of the irregular component is checked using the augmented Dickey-Fuller test. A linear regression containing a dummy variable is used to test the statistical significance of the effect of the war starting. If the effect of the beginning of the war dominates price dynamics, then the corresponding coefficient in the regression equation should be statistically significant.

1.4 Scope and Limitations

The paper focuses on the price dynamics of only three metals (aluminum, copper, iron) and the results cannot be extended to all other metals. The methodology used in this paper makes sense under the assumption that in the first months of the war the effect of the war was the dominant factor in the dynamics of metal prices. The identification of the period of influence of the war effect on metal prices in the work is justified in general terms, so it is possible that in some particular cases some individual factors were not taken into account. The historical data for the study includes metal prices from 2012 to 2023 and monthly indices from 2012 to 2023; the

author does not exclude that expanding or narrowing the length of the time series may slightly change the results of the work.

1.5 Outline

The thesis is divided into six chapters. Chapter 2 describes the recent trends of the metal prices on the global market and in foreign trade of Ukraine. The ways in which the war affects the price of metals are presented here. The phases in the price dynamics of each metal are analysed. In chapter 3 the main components of the time series are analysed. The algorithm for isolating the war effect component is also described. This chapter also contains the justification for the period of influence of the war effect on metal prices. Chapter 4 describes the data used in the study. In chapter 5 the empirical results are presented and analysed. Chapter 6 presents and discusses the final conclusions and recommendations.

Chapter 2. INDUSTRY OVERVIEW AND RELATED STUDIES

2.1 Mechanisms of influence of the full-scale phase of the Russian-Ukrainian war (from 2022) on the prices of aluminum, copper and iron ore.

The war in Ukraine since the end of February 2022 have had uneven impacts on commodity markets. The effects were most pronounced in the oil, natural gas, fertilizer and grain markets. Metals markets have been under less pressure. The heterogeneity of the impact of the war on different commodities is due to a combination of the following factors:

- the possibility of redirecting sanctioned Russian exports through other countries;

- the amount of raw material stocks that can be used for the period of supply disruptions;

- the potential for an urgent increase in commodity production in other countries;

- market sensitivity to the war-induced decline in demand.

At the beginning of 2022, Russia's share in global aluminum exports was estimated at 4.2% (according to JPMorgan). In this regard, the sanctions imposed on Russian aluminum exports had an impact on global aluminum prices. Alumina imports were also restricted due to the refusal of supplies from Australia, the largest importer of alumina to Russia. In February, Rusal suspended production at its alumina refinery in Ukraine. Combined, these led to the loss of 2/3 of Russian imports Alumina.

Russian copper exports accounted for about 3.3% of global exports. Although the EU has not imposed sanctions on Russian copper, Russian producers have been subject to blocking sanctions by the United States. And the largest importer of copper in Europe, Aurubis, refused to extend contracts with Russian producers, as a result of which Russian copper exports to Europe fell from 27.9 thousand tons in January 2022 to 7.7 thousand tons by May 2023. However, the main decline in imports occurred in 2023, and in 2022, according to Eurostat, there was even a slight increase in imports (301.6 thousand tons in 2022 compared to 294.5 thousand tons in 2021). Thus, the shock in the medical market from the war and sanctions restrictions for 2022 was moderate or even weak.

According to the World Bank, in 2021, Ukraine ranked 4th in the world (\$3.9 billion) in terms of the value of iron ore exports, second only to Australia (\$115.2 billion), Brazil (\$40.7 billion) and Canada (\$5.4 billion). In 2022, Ukraine's exports decreased to \$2.9 billion, behind South Africa, Sweden and China in addition to the three leaders. After the start Russia's armed invasion due to the blockade of seaports, exports have been restricted. Ukraine redirected part of its iron ore exports to European countries, however, due to increased logistics costs by rail and lower prices on the world market, production was reduced. On the other hand, the war caused a significant increase in energy costs for metal producers. Steel producers who import iron ore, in an effort to reduce increased costs, reduced production, or tried to find cheaper suppliers of ore, which pushed world iron ore prices down.

2.2 Literature review

Numerous studies have explored the economic consequences of armed conflicts on domestic markets, sector incomes, and world market prices in various contexts. These studies provide valuable insights and serve as a foundation for understanding the potential effects of the war on the metallurgy sector in Ukraine. The following are three relevant studies that shed light on similar themes:

"The Economic Impact of Armed Conflict and the Price of Violence" by Paul Collier and Anke Hoeffler (2004):

This study examines the economic consequences of armed conflicts, focusing on the impact on economic growth, domestic investment, and capital accumulation. It highlights the negative effects of conflict on various sectors, including manufacturing, agriculture, and trade. The study emphasizes the importance of restoring economic stability and rebuilding infrastructure in post-conflict situations to foster sustainable development.

"The Effects of Conflict on Local Taxation: Evidence from the War in Iraq" by Ryan S. Jablonski (2015):

This research investigates the effects of the war in Iraq on local tax revenues, a crucial source of income for local governments. The study finds that armed conflict disrupts tax collection mechanisms, leading to significant declines in revenue. It emphasizes the importance of understanding the fiscal implications of conflict and developing strategies to mitigate the adverse effects on local economies.

"The Impact of Political Conflict on Trade: Evidence from the Ukraine Crisis" by Sergey Kiselev and Philip Ushchev (2017):

This study analyzes the impact of the Ukraine crisis on international trade, focusing on the trade relationship between Ukraine and its major trading partners. The research finds substantial negative effects of the conflict on bilateral trade flows, highlighting the disruption of supply chains, increased trade costs, and reduced market access. The study emphasizes the importance of diversifying trade partners and developing resilient trade strategies in conflict-affected regions.

These studies offer insightful information about the financial effects of armed conflicts and market disruptions on both domestic and international markets. Although they might not particularly address the Ukrainian metallurgical industry, they do provide pertinent approaches, frameworks, and factors to take into account when analyzing how the war has affected domestic prices, sector earnings, and global market prices.

By concentrating on the influence of the conflict on domestic pricing and sector incomes in Ukraine's metallurgy industry, as well as its implications for world market prices, the current thesis seeks to close the knowledge gap by building on the findings and techniques of these research. This study aims to offer a thorough analysis of the economic effects of the war in the industry by taking into account the special context of Ukraine and its importance in the global metallurgical market.

Charper 3. METHODOLOGY

3.1 Hypotheses tested in this paper:

Hypothesis 1. The start of the Russian-Ukrainian war on February 24, 2022 had a statistically significant impact on world metal prices (aluminum, iron ore, copper).

Hypothesis 2. The start of the Russian-Ukrainian war on February 24, 2022 had a statistically significant impact on Ukrainian export prices of metals (aluminum and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of the Classifier of Foreign Trade of Ukraine, respectively).

Hypothesis 3. The start of the Russian-Ukrainian war on February 24, 2022 had a statistically significant impact on Ukrainian export prices of metals (aluminum and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of the Classifier of Foreign Trade of Ukraine, respectively).

Hypothesis 4. The start of the Russian-Ukrainian war on February 24, 2022 had a statistically significant impact on the tirms of Ukraine's trade in metals (aluminum and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of the Classifier of Foreign Trade of Ukraine, respectively).

3.2 The main components of the time series of metal prices.

<u>Cyclic component C_t </u>. As the graphical analysis of the dynamics of prices for aluminum, copper and iron ore in 2013-2023 in the world market and in Ukraine's foreign trade showed, the cyclical component is the leading component of the time series. Particularly striking cycles stand out in the dynamics of world prices and the dynamics of export prices in Ukraine, where 3-4 major cycles are noted. According to the time series charts of the terms of trading in metals in Ukraine, cyclicality is not traced.

<u>Seasonal component S_t </u>. The study of autocorrelation functions for the initial world prices of aluminum, copper, and iron ore does not reveal monthly seasonality (lag = 12), since the corresponding ACF coefficients are not statistically significant

at the significance level of 0.05 (Figure 1). Similar conclusions are made on the basis of the analysis of Ukraine's export prices according to the Paasche price index by the base year 2012. In import price indices, an autocorrelation with a lag of 12 is observed for iron, since in January 2015 there was an abnormal value of the import price index for this metal. At the same time, the nature of the anomaly of this value remains unclear.

Figure 1. Autocorrelation functions for nominal metal prices with Bartlett 95% standard errors

<u>Trend component T_t </u>. It is not possible to identify a stable trend component that plays a leading role in the time series of metal prices (at least in the time interval 2013-2020). It is possible to consider short-term trends within a particular cycle, however, in this case, the trend component plays a secondary role, not the leading

one. In the event that the trend component played a leading role and cyclical components are secondary, visually on the chart, cycles would follow the trend, and not vice versa.

Irregular component E_t . This component is counted as a residual component after excluding the cyclical, seasonal and trend components. Since seasonality and visible trend are not clearly observed in the time series, the main task is to filter the cyclic component.

3.3 The algorithm for identifying the shock component – the impact of the beginning of the large-scale phase of the Russian-Ukrainian war.

Along with the main components, metal prices can include shock components of individual geopolitical or other events that have a short-term but very significant impact on the price. Among such events in recent years, the COVID-19 pandemic (or, more precisely, the reaction of society to the pandemic in the form of restrictive measures, in particular, lockdowns, which have direct economic consequences), as well as Russia's armed invasion of Ukraine in February 2022, stand out. Both events are shocks to the economy, as they are unpredictable both in terms of the duration of the impact and the expected consequences. The reaction of markets to such shocks is most evident in commodity prices, in particular, metals, since market participants often factor in all possible risks of consequences, thereby multiplying the effect of the shock factor.

To assess the impact of the shock component, the following sequence of analysis seems appropriate:

Stage 1. Isolation of the cyclic component. It can be carried out in different ways. In this paper, a centered moving average with a smoothing period of t=12 months is used for filtering.

Stage 2. Testing of the residual component for stationarity. Since only the random and shock components should remain after the cyclic component is excluded, the part of the time series where the shock component should not occur chronologically is checked using the single root test (the Augmented Dickey-Fuller test). In the case of nonstationarity, the most appropriate filtering method is selected.

Stage 3. Estimation of the duration of the shock component. Typically, this is a relatively short period of time during which the shock factor is dominant in the markets.

Stage 4. Estimating the significance of the shock component using the following year's regression:

$$\hat{y}_t = a_0 + a_1 \cdot W + a_2 \cdot W \cdot t + \varepsilon_t,$$

where \hat{y}_t is the time series of basic metal price indices with cyclical, trend and seasonal components excluded (i.e. stationary series + shock components);

W – fictitious variable of the war (equal to 0 in the period before and after the impact of the shock of the beginning of the war, 1 during the period of the market shock);

t – period number (month number in order, January 2013 t=1);

 ε_t – irregular component, regression residuals;

 a_0, a_1, a_2 - Least squares regression parameters.

The inclusion of the factor in the regression along with the W factor $(W \cdot t)$ is caused by the need to assess the impact of the shock for several periods (months) in case of uneven distribution of the impact within the estimated critical period.

Along with the extended form, abbreviated regressions $\hat{y}_t = a_0 + a_2 \cdot W \cdot t + \varepsilon_t$ and $\hat{y}_t = a_0 + a_1 \cdot W + \varepsilon_t$.

The statistical significance of at least one of the coefficients a_1, a_2 will be equivalent to the statistical significance of the impact of the war shock on the price of the corresponding metal.

3.4 Estimation of the duration of the shock component.

In order to assess the duration of the shock effect of the beginning of the war, it is necessary to select such a critical point (bifurcation point) at which the effect of other important factors in the dynamics of metal prices begins to outweigh the shock effect. These are, first of all, the following factors:

a) Inflationary consequences of excessive money printing as part of aid programs during the period of pandemic restrictions.

b) The second wave of lockdowns in China (the closure of Shanghai and some other cities), which sharply reduced economic activity in China, the largest consumer of metals in the world. China's industrial production index decreased by -2.9% in April 2022 (compared to April 2021). In March-April, the Shanghai Composite stock index lost about 12% of its capitalization.

c) Economic consequences of high energy prices for the industry of European developed countries. In particular, in Germany, industrial production in March 2022 decreased by -3.5% (compared to the previous year), in April it decreased by -2.2%, in May it decreased by -1.5%.

d) Decisive measures taken by central banks to combat high inflation. On March 16, the Fed began a cycle of rate hikes (to 0.5% on March 16, to 1% on May 4, to 1.75% on June 15 and beyond during the second half of 2022 and in 2023 to a high of 5.5% on July 26, 2023).

It is also necessary to take into account the methodological difference in the world prices used and the prices of Ukraine's foreign trade. World metal prices are exchange quotations of world commodity exchanges (in fact, momentary levels of the time series), so the shock effect of the beginning of the war began to be laid down at the end of February (that is, it was taken into account in the price index for February 2022). Ukraine's export and import prices are taken into account in the weighted average aggregate indices, and since only 5 out of 28 days in February fall on hostilities, the shock effect of February is reflected in the prices of Ukraine's foreign trade very insignificantly.

Taking into account the above factors, the interval from February to April 2022 (W_1) was taken as the time range for taking into account the shock component of the war for world prices, and the interval from March to May 2022 (W_2) was taken for foreign trade prices in Ukraine.

Chapter 4. DATA

4.1 Dynamics of world prices for aluminum, copper and iron ore in 2013-2023 and since the beginning of the war in 2022.

In 2013-2020, world aluminium prices showed relatively restrained volatility, deviating to +20% from 2012 prices when growing and up to -30% from 2012 prices when decreasing. Several price cycles in aluminium can be distinguished: a short cycle in 2013-2014 (up to 110% at the peak of 2014), a downward wave in 2015-2017 (to -30% at a low in 2016), The most significant volatility in aluminum prices was observed in the 2021-2023 cycle, when the price reached up to +60% at the 2022 high from 2012 levels, which can be considered the result of the influence of the global inflationary processes in conjunction with the Russian-Ukrainian war (Figure 2).

Figure 2. Global prices of the metals in the years 2013-2023, % to 2012 (the yellow area shows the first 4 months of the war)

The dynamics of global copper prices compared to aluminium have been more resilient to declines over the past decade. After a prolonged decline in 2013-2016, global copper prices fell below 60% of 2012 levels, then recovered to 90% of 2012 levels by 2018, and then fell significantly again to 60% levels at the beginning of the pandemic in 2020. Since 2021, copper prices have grown dynamically, reaching 130% of 2012 levels in mid-2021. In the second half of 2021, copper prices stabilized at around 120% before retreating to 100% in the second half of 2022. The beginning of the military conflict did not have a visible noticeable impact on world copper prices (or temporarily restrained them from falling).

Iron ore showed the most significant fluctuations in the dynamics of its world prices among the three metals under consideration (up to 30% at the lows and up to 160% at the highs from the 2012 levels). In 2013-2016, there was a phase of decline in world prices, in 2016-2021 - a phase of growth in world prices for iron ore, and from the second half of 2021 - a sharp decline in world prices.

In the first months of the war, world iron ore prices showed only a slight decline, while during 2022 as a whole, the price of copper stabilized at 80-90% of the base year of 2012. In general, the dynamics charts show a more significant impact of the war on world aluminum prices than on the prices of copper and iron ore.

4.2 Dynamics of export and import prices of Ukraine, as well as terms of trade of aluminum, copperand iron ores in 2013-2023 and since the beginning of the war in 2022.

In 2013-2020, export prices of all three metals showed a similar cyclicality: a decline by 2016, then an increase by 2018 and a decrease by 2020. Since 2021, aluminum export prices have shown an increase of up to 160% from 2012 levels, then decline by the beginning of 2022 and, with the beginning of the war, show a noticeable increase in the first half of 2022. Copper and iron ore in 2021 showed only moderate growth from 80% to 120% of 2012 levels, while in the first months of the war they moved with multidirectional monthly dynamics with a general downward trend. Thus, graphically, there is a noticeable impact of the war on the export prices of aluminum and, to some extent, iron ore, in the dynamics of copper export prices, the impact of the war is not discernible (Figure 3).

Figure 3. Export prices of the metals in Ukraine in the years 2013-2023, % to 2012 (the yellow area shows the first 4 months of the war)

Compared to exports, Ukraine's imports of metals show a much more significant price fluctuation with an upward trend in recent years. In general, the phases of growth and decline repeated the phases in export prices. However, the most noticeable dynamics since 2021 showed import prices not only for aluminum, but also for iron ore (up to 200% compared to the level of 2012). In the price dynamics, there is a noticeable impact of the war on import prices of aluminum, and to a lesser extent - in import prices of copper (Figure 4).

Figure 4. Import prices of the metals in Ukraine in the years 2013-2023, % to 2012 (the yellow area shows the first 4 months of the war)

The ratio of export prices of the metals under consideration to imports in Ukraine showed extremely high intra-year fluctuations between months, while since 2015 there has been a noticeable downward trend in the terms of trade for copper and ferrous metals. The effect of war on the terms of trade is difficult to determine graphically, and it is necessary to test the relevant statistical hypotheses (Figure 5).

Figure 5. Terms of trade of the metals in Ukraine in the years 2013-2023, % to 2012 (the yellow area shows the first 4 months of the war)

Chapter 5. RESULTS

The market shock from the beginning of the large-scale phase of the Russian-Ukrainian war was statistically significant (at the 0.95 confidence level) for global aluminum prices (the impact is high because the P-level is very low). In the model y(W) for coefficient a_1 P-level is 7.6·10⁻⁵, in the model y(Wt) for coefficient a_2 P-level is 7.2·10⁻⁵, and in the model y(W,Wt) both coefficients a_1 and a_2 are statistically insignificant at the level of 0.05 (P-level 0.105 and 0.099 for parameters a_1 and a_2 respectively). Thus, one parameter was sufficient to identify the impact of the beginning of the war on world aluminum prices. The extremely low P-level value for the first two models indicates that world aluminum prices were very sensitive to the shock from the beginning of the war.

The contribution of the shock component of the beginning of the war to the dynamics of global iron ore prices cannot be recognized as statistically significant in any of the considered modifications of the models: in the model y(W) for the coefficient a_1 P-level is 0.511, in the model y(Wt) for the coefficient a_2 P-level is 0.510, and in the model y(W,Wt) both coefficients a_1 and a_2 turned out to be statistically insignificant at the level of 0.05 (P-level 0.735 and 0.731 for parameters a_1 and a_2 respectively). Thus, no significant effect of the war in the dynamics of global iron ore prices was found.

The contribution of the shock component of the beginning of the war to the dynamics of global copper prices also cannot be recognized as statistically significant in any of the considered modifications of the models: in the model y(W) for the coefficient a_1 P-level is 0.214, in the model y(Wt) for the coefficient a_2 P-level is 0.211, and in the model y(W,Wt) both coefficients a_1 and a_2 turned out to be statistically insignificant at the level of 0.05 (P-level 0.268 and 0.264 for parameters a1 and a2, respectively). Thus, no significant effect of the war in the dynamics of world copper prices was also found (Table 1).

		Gloł	oal Marke	et	Export			
Regression	Options	Aluminum	Iron ore	Copper	Aluminum	Iron ore	Copper	
y=a0+a1*W	P(a1)	7,6*10 ⁻⁵	0,511	0,214	0,08	0,788	0,106	
y=a0+a2*Wt	P(a2)	7 ,2 *10 ⁻⁵	0,510	0,211	0,077	0,766	0,108	
y=a0+a1*W+a2*Wt	P(a1)	0,105	0,735	0,268	0,012	0,034	0,276	
	P(a2)	0,099	0,731	0,264	0,011	0,034	0,281	

Table 1. Levels of Significance of Metal Price Regression Coefficients (Global Market and Exports of Ukraine)

Aluminum export prices in Ukraine were significantly affected by the effect of the beginning of the war. This is not reflected in the y(W) model, where the P-level of coefficient a_1 is 0.08 > 0.05, nor is it reflected in the y(Wt) model, where the P-level of coefficient a_2 was 0.077 > 0.05. However, in the y(W,Wt) model, both coefficients a_1 and a_2 are statistically significant (P₁ = 0.012 < 0.05 and P₂ = 0.011 < 0.05). Moreover, since $a_2 = 14.44 > 0$, the war caused an upward effect in the export prices of aluminum in Ukraine.

Export prices of iron in Ukraine were significantly affected by the effect of the beginning of the war. This is not reflected in the y(W) model, where the P-level of the coefficient a_1 is 0.788 > 0.05, nor is it reflected in the y(Wt) model, where the P-level of the coefficient a_2 is 0.766 > 0.05. However, in the y(W,Wt) model, both coefficients a_1 and a_2 are statistically significant (P₁ = 0.034 < 0.05 and P₂ = 0.034 < 0.05). In this case, since $a_2 = 10.47 > 0$, the war caused an increase in iron export prices in Ukraine.

Export prices of copper in Ukraine did not react significantly to the beginning of the war: in the model y(W) p-level for coefficient a_1 is 0.106 > 0.05, in the model y(Wt) p-level for coefficient a_2 is 0.108 > 0.05, in the model y(W,Wt) both coefficients are not statistically significant, as $P_1 = 0.276 > 0.05$, $P_2 = 0.281 > 0.05$.

Import prices of aluminum in Ukraine changed significantly under the effect of the beginning of the war. This is not reflected in the model y(W), where the P-level of coefficient a_1 is 0.267 > 0.05, nor is it reflected in the model y(Wt), where the P-level of coefficient a_2 is 0.275 > 0.05. However, in the y(W,Wt) model, both coefficients a_1 and a_2 were statistically significant (P₁ = 0.016 < 0.05 and P₂ = 0.016

< 0.05). At the same time, since $a_2 = 18.54 > 0$, the war caused a growth effect in import prices of aluminum in Ukraine (Table 2).

		1	mport		Trading Condition			
Regression	Options	Aluminum	Iron ore	Copper	Aluminum	Iron ore	Copper	
y=a0+a1*W	P(a1)	0,267	0,306	0,0088	0,200	0,350	0,028	
y=a0+a2*Wt	P(a2)	0,275	0,305	0,0092	0,201	0,346	0,029	
y=a0+a1*W+a2*Wt	P(a1)	0,016	0,877	0,039	0,726	0,299	0,144	
	P(a2)	0,016	0,871	0,041	0,733	0,296	0,149	

Table 2. Levels of Significance of Metal Price Regression Coefficients (Ukraine's Imports and Terms of Trade)

Import prices of iron in Ukraine did not react significantly to the beginning of the war: in the model y(W) p-level for coefficient a_1 is 0.306 > 0.05, in the model y(Wt) p-level for coefficient a_2 is 0.305 > 0.05, in the model y(W,Wt) both coefficients are not statistically significant as $P_1 = 0.877 > 0.05$, $P_2 = 0.871 > 0.05$.

Import prices of copper in Ukraine were found to be sensitive to the shock from the beginning of the war. In the model y(W) P-level for coefficient a_1 is 0.0088 < 0.05, in the model y(Wt) P-level for coefficient a_2 is 0.0092 < 0.05, and in the model y(W,Wt) the significance levels for the coefficients are $P_1 = 0.039 < 0.05$ and $P_2 =$ 0.041 < 0.05. In this case, since the value of coefficient $a_2 = -7.11 < 0$, the war led to a decrease in import prices for copper in Ukraine.

The terms of trade shows the relationship between export and import prices. If export prices change unidirectionally together with import prices, then even if the war effect is statistically significant separately for export prices and separately for import prices, it is likely that these dynamics will cancel each other out for the value of the terms of trade. In case of differently directed significant changes in export and import prices, on the contrary, there will be an amplification of the effect for the terms of trade. If there is a significant change for one of the components (export prices or import prices), the effect for the terms of trade can be either statistically significant or statistically insignificant, it can be revealed only by testing the statistical hypothesis.

Ukraine's terms of trade for aluminum turned out to be insensitive to the shock from the beginning of the war, for the model y(W) P-level for coefficient a_1 is 0.200

> 0.05, for the model y(Wt) P-level for coefficient a_2 is 0.201 > 0.05, for the model y(W,Wt) both coefficients turned out to be statistically insignificant as $P_1 = 0.726 > 0.05$ and $P_2 = 0.733 > 0.05$. Thus, the significant change (increase) in aluminum export prices and the significant change (increase) in aluminum import prices mutually offset the effect of war on the terms of trade for aluminum.

Ukraine's terms of trade for iron turned out to be insensitive to the shock from the beginning of the war, for the model y(W) P-level for coefficient a_1 is 0.350 > 0.05, for the model y(Wt) P-level for coefficient a_2 is 0.346 > 0.05, for the model y(W,Wt) both coefficients turned out to be statistically insignificant as $P_1 = 0.299 > 0.05$ and $P_2 = 0.296 > 0.05$. Thus, a significant change (increase) in iron export prices in the absence of a significant change in import prices did not result in a statistically significant change in the terms of trade for iron.

Under the influence of a significant increase in import prices for copper, at which export prices showed no significant dynamics in the first months of the war, the terms of trade for copper showed a significant decline. This is evidenced by a negative significant regression coefficient $a_1 = -9.86 < 0$ (p = 0.028 < 0.05) for the y(W) model and a negative significant regression coefficient $a_2 = -0.088 < 0$ (p = 0.029 < 0.05) for the y(Wt) model.

Chapter 6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Main conclusions of the study.

The hypothesis testing has shown that the war had a strong impact on global aluminum prices. This is consistent with the mechanisms of influence transmission described above (expectations of a sharp reduction in supplies due to sanctions and others). World iron ore and copper prices in February-April 2022 showed the expected dynamics within their cycle and did not show sharp changes associated with the Russian-Ukrainian war.

For Ukraine's foreign trade, the beginning of the war had a more dramatic impact on metal prices. A moderate impact is noted in export prices of aluminum and ferrous metals. The war also had a noticeable and statistically significant impact on the growth of import prices of copper. In this regard, the already long declining terms of trade for copper have been markedly reduced by the beginning of the war.

Comparison of sensitivity of world prices and prices of Ukraine's foreign trade to the shock of the beginning of the war allows us to draw the following conclusions:

1) Aluminum prices both on the world market and in Ukraine's foreign trade (exports and imports) were characterized by a significant sensitivity to the war shock, while the effect in world aluminum prices was noticeably higher. The direction of movement of aluminum prices in all markets is growth. The terms of trade for aluminum in Ukraine did not change significantly, as the growth in export and import prices was statistically comparable.

2) World prices for iron ore did not show noticeable dynamics, also import prices for iron in Ukraine did not show noticeable dynamics. However, export prices for iron showed significant growth. Such results show, on the one hand, the decreasing influence of Ukrainian iron ore exports on the world market, on the other hand, they demonstrate the severity of the problems that led to an increase in the price of iron exports directly due to the hostilities on the territory of the country.

3) The copper price has not been significantly affected by the beginning of the military conflict on the world market, nor has it affected Ukrainian copper export

prices. However, Ukraine's copper import prices reacted significantly to the war shock, which also affected Ukraine's copper terms of trade.

6.2 Significance of the Russian-Ukrainian military conflict against the background of other factors shaping metal prices on the world market.

Among the three metals under consideration, only aluminum reacted with a significant price increase on the world market as a result of the shock from the beginning of the Russian-Ukrainian war, no statistically significant changes in iron ore and copper prices were found. In addition, within the cyclical dynamics of world prices, the duration of the shock from the impact of the war is limited to approximately three months. In general, the dynamics of all three metals show the following phase patterns: (1) price declines or extremely weak dynamics in the first months of the coronavirus pandemic (February-April 2020; (2) significant price increases in 2021, driven by the global economic recovery and the injection of money by the Federal Reserve and the European Central Bank; (3) some acceleration of growth or delayed price declines in the first months of the war; and (4) declines in metal prices in the second half of 2022 to the first half of 2023, influenced by the slowdown in China's economy and the global economy. The graphs of dynamics (Appendix 1) show that the most significant change in metal prices occurs in phases (2) and (4), and the impact of the war in phase (3), firstly, short-term in time, and secondly, not sustainable in impact. Thus, the impact of global factors (changes in global demand, monetary factors in major economies and others) looks like a much more significant driver of metal prices than the Russian-Ukrainian war.

6.3 Ways of using the results obtained in the work.

The obtained results of the study can be applied in a number of directions, among which the following can be noted:

1) War risks insurance. Despite the fact that in property insurance of many countries military-political events are regarded as an extreme force majeure circumstance and serve as an exception for the payment of insurance compensation for loss or damage to property, the demand for war risk insurance is increasingly growing and stimulates the expansion of the list of insurance types by adding war risk insurance. An example of one of the largest organizations insuring direct investments against military risks is the Multilateral Investment Guarantee Agency (MIGA), a member of the World Bank Group. During 2022, the agency provided guarantees for 54 projects worth \$4.9 billion. The American International Development Finance Corporation (DFC) is also engaged in war risk insurance. It specializes in supporting investors who are willing to invest in high-risk countries. DFC was established in December 2019, since then it has provided guarantees for 4 thousand projects, the total amount of investments in which amounted to \$200 billion. Such companies are usually professionally engaged in calculating the degree of military risk both for individual countries and for individual industries and groups of goods.

When assessing the risk of war, the coefficients with the dummy variable W can serve as a basis for taking into account the relative dynamics of metal prices. In this case, the coefficients are comparable for comparing the dynamics of metal prices among themselves, since all regression models are calculated by percentage changes to a single base period. For example, from Appendix 3, the obtained values of coefficients a1: 16.0 for aluminum, 4.7 for iron ore and 3.8 for copper show that the risk of war for world aluminum prices is about 3.4 times higher than for iron ore and 4.2 times higher than for copper.

2) Accounting for military risks in international contracts. Military risks are being incorporated into international export-import contracts more and more often, especially in the foreign trade practice of Ukraine, where a legislative basis is being created for this purpose. Ukrainian draft law No. 9015 amends the law "On Financial Mechanisms to Stimulate Export Activity" No. 1792-VIII and authorizes the Export Credit Agency (ECA) to insure and reinsure direct investments in Ukraine against risks that may be caused by armed aggression, hostilities and/or terrorism. ECA acts as a guarantor of fulfillment of foreign economic contracts, factoring agreements, letters of credit, etc. If, for example, a company wants to take out a loan to finance an export contract, the bank will not grant the loan without insurance, which ECA can provide. In order to assess risks and calculate insurance premiums, organizations such as ECAs may need industry-specific risk ratios, which can be derived from the results of this paper.

3) Accounting for military risks in metal exchange trading. In order to diversify investments in commodities and metals in particular, it may be necessary to calculate the mean square deviation of metal price quotations. The dynamics of metal prices, except for the trend and cyclical component, includes the variation caused by military and political factors. The coefficients calculated in this paper can be used to calculate the overall risk in exchange trading of metals and financial derivatives linked to metal prices.

ANNEX 1

Smoothing Time Series with a 12-Month Centered Simple Moving Average G_Alum, G_Iron, G_Co for basic indices of world prices; Exp_Alum, Exp_Iron, Exp_Co – for basic indices of export prices of Ukraine; Imp_Alum, Imp_Iron, Imp_Co – for basic indices of import prices of Ukraine; T^{*}T_Alum, T^{*}T_Iron, T^{*}T_Co – for basic indices of the terms of trade of Ukraine.

ANNEX 2

Checking the Stationarity of Smoothed Series Using the Dickey-Fuller Test

```
Augmented Dickey-Fuller test for mc G Alum
including 2 lags of (1-L)mc_G_Alum
sample size 112
unit-root null hypothesis: a = 1
  test without constant
 model: (1-L)y = (a-1)*y(-1) + \ldots + e
  estimated value of (a - 1): -0.599611
  test statistic: tau nc(1) = -6.20842
  asymptotic p-value 1.505e-009
  1st-order autocorrelation coeff. for e: -0.037
  lagged differences: F(2, 109) = 4.236 [0.0169]
       Augmented Dickey-Fuller test for mc G Iron
       including 2 lags of (1-L)mc G Iron
       sample size 112
       unit-root null hypothesis: a = 1
         test without constant
         model: (1-L)y = (a-1)*y(-1) + \ldots + e
         estimated value of (a - 1): -0.539739
         test statistic: tau nc(1) = -6.88651
         asymptotic p-value 3.394e-011
         1st-order autocorrelation coeff. for e: -0.037
         lagged differences: F(2, 109) = 15.755 [0.0000]
Augmented Dickey-Fuller test for mc G Co
including 2 lags of (1-L)mc G Co
sample size 112
unit-root null hypothesis: a = 1
  test without constant
 model: (1-L)y = (a-1)*y(-1) + \ldots + e
  estimated value of (a - 1): -0.773628
  test statistic: tau nc(1) = -7.90826
  asymptotic p-value 8.236e-014
  1st-order autocorrelation coeff. for e: -0.040
  lagged differences: F(2, 109) = 12.422 [0.0000]
```

```
Augmented Dickey-Fuller test for mc_Exp_Alum
        including 2 lags of (1-L)mc_Exp_Alum
       sample size 112
       unit-root null hypothesis: a = 1
         test without constant
         model: (1-L)y = (a-1)*y(-1) + \ldots + e
         estimated value of (a - 1): -0.684518
         test statistic: tau nc(1) = -6.85064
         asymptotic p-value 4.166e-011
          1st-order autocorrelation coeff. for e: -0.109
          lagged differences: F(2, 109) = 8.700 [0.0003]
Augmented Dickey-Fuller test for mc Exp Iron
including 2 lags of (1-L)mc Exp Iron
sample size 112
unit-root null hypothesis: a = 1
 test without constant
 model: (1-L)y = (a-1)*y(-1) + \ldots + e
 estimated value of (a - 1): -1.15572
 test statistic: tau nc(1) = -10.1997
 asymptotic p-value 5.484e-020
  1st-order autocorrelation coeff. for e: 0.087
  lagged differences: F(2, 109) = 28.924 [0.0000]
       Augmented Dickey-Fuller test for mc Exp Co
       including 5 lags of (1-L)mc_Exp_Co
       sample size 109
       unit-root null hypothesis: a = 1
         test without constant
         model: (1-L)y = (a-1)*y(-1) + \ldots + e
         estimated value of (a - 1): -1.02658
         test statistic: tau nc(1) = -4.5805
         asymptotic p-value 5.28e-006
         1st-order autocorrelation coeff. for e: 0.076
         lagged differences: F(5, 103) = 5.081 [0.0003]
Augmented Dickey-Fuller test for mc Imp Alum
including 2 lags of (1-L)mc Imp Alum
sample size 112
unit-root null hypothesis: a = 1
  test without constant
 model: (1-L)y = (a-1)*y(-1) + \ldots + e
  estimated value of (a - 1): -1.33275
  test statistic: tau nc(1) = -9.08046
  asymptotic p-value 6.098e-017
  1st-order autocorrelation coeff. for e: -0.123
  lagged differences: F(2, 109) = 15.279 [0.0000]
```

```
Augmented Dickey-Fuller test for mc_Imp_Iron
       including 5 lags of (1-L)mc_Imp_Iron
       sample size 109
       unit-root null hypothesis: a = 1
         test without constant
         model: (1-L)y = (a-1)*y(-1) + \ldots + e
         estimated value of (a - 1): -1.4625
         test statistic: tau nc(1) = -7.03689
         asymptotic p-value 1.428e-011
         1st-order autocorrelation coeff. for e: -0.057
         lagged differences: F(5, 103) = 5.473 [0.0002]
Augmented Dickey-Fuller test for mc Imp Co
including 2 lags of (1-L)mc Imp Co
sample size 112
unit-root null hypothesis: a = 1
  test without constant
 model: (1-L)y = (a-1)*y(-1) + \ldots + e
  estimated value of (a - 1): -1.1843
  test statistic: tau nc(1) = -7.60477
  asymptotic p-value 5.086e-013
  1st-order autocorrelation coeff. for e: 0.000
  lagged differences: F(2, 109) = 7.806 [0.0007]
        Augmented Dickey-Fuller test for mc TT Alum
        including 2 lags of (1-L)mc_TT_Alum
        sample size 112
        unit-root null hypothesis: a = 1
         test without constant
         model: (1-L)y = (a-1)*y(-1) + \ldots + e
         estimated value of (a - 1): -1.06238
         test statistic: tau nc(1) = -8.15514
          asymptotic p-value 1.843e-014
          1st-order autocorrelation coeff. for e: -0.075
          lagged differences: F(2, 109) = 14.655 [0.0000]
Augmented Dickey-Fuller test for mc TT Iron
including 5 lags of (1-L)mc TT Iron
sample size 109
unit-root null hypothesis: a = 1
  test without constant
  model: (1-L)y = (a-1)*y(-1) + \ldots + e
  estimated value of (a - 1): -1.82615
  test statistic: tau nc(1) = -9.57219
  asymptotic p-value 2.815e-018
  1st-order autocorrelation coeff. for e: -0.148
  lagged differences: F(5, 103) = 10.991 [0.0000]
```

Augmented Dickey-Fuller test for mc_TT_Co including 5 lags of (1-L)mc_TT_Co sample size 109 unit-root null hypothesis: a = 1

test without constant model: $(1-L)y = (a-1)*y(-1) + \ldots + e$ estimated value of (a - 1): -1.33055test statistic: tau_nc(1) = -5.31004 asymptotic p-value 1.641e-007 1st-order autocorrelation coeff. for e: 0.007 lagged differences: F(5, 103) = 2.942 [0.0160]

ANNEX 3

Regression $\hat{y}_t = a_0 + a_1 \cdot W + \varepsilon_t$

Model 1: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_G_Alum

	coeffic	ient	std.	error	t-ratio	p-value	
const	-0.337	 257 0	0.62	29565	-0.5357	0.5932	***
WI	10.000	0	3.03	9700	4.107	7.0IE-03	
Mean depender	nt var	0.080	364	s.D. d	ependent va	r 7.111	283
Sum squared :	resid	5016.	227	S.E. o	f regressio	n 6.662	687
R-squared		0.129	885	Adjust	ed R-square	d 0.122	185
F(1, 113)		16.86	794	P-valu	e(F)	0.000	076
Log-likeliho	od	-380.2	693	Akaike	criterion	764.5	385
Schwarz crite	erion	770.0	284	Hannan	-Quinn	766.7	668
rho		0.523	956	Durbin	-Watson	0.949	131
Model 3: OL Dependent v	S, using ariable:) obser mc_G_	vatio Iron	ns 2013	:07-2023:01	. (T = 115)
	coeffi	.cient	std	. error	t-ratio	p-value	!
const	0.202	294	1.	15072	0.1758	0.8608	
W1	4.693	14	7.	12455	0.6587	0.5114	
Mean depend	ent var	0.32	4724	s.D.	dependent v	var 12.1	4779
Sum squared	resid	1675	8.49	S.E.	of regressi	.on 12.1	7806
R-squared		0.00	3825	Adjus	ted R-squar	ed -0.00	4990
F(1, 113)		0.43	3922	P-val	.ue(F)	0.51	1411
Log-likelih	ood	-449.	6273	Akaik	e criterion	ı 903.	2546
Schwarz cri	terion	908.	7445	Hanns	n-Quinn	905.	4829
rho		0.67	2372	Durbi	n-Watson	0.65	2485
Model 4: OLS, Dependent van	, using ciable:	observ mc_G_C	ation: o	s 2013:	07-2023:01	(T = 115)	
	coeffic	iont	ot d	error	t_retio	n_voluo	

COEII	lcient	sta.	erro	r t-ratio	p-value	
const -0.1	 16830	0.49	95198	-0.2359	0.8139	
W1 3.8	3107	3.0	6596	1.250	0.2140	
Mean dependent var	-0.016	889	s.D.	dependent var	5.25356	8
Sum squared resid	3103.	515	S.E.	of regression	n 5.24068	1
R-squared	0.013	629	Adjus	sted R-squared	1 0.00490	0
F(1, 113)	1.561	368	P-va	lue(F)	0.21404	7
Log-likelihood	-352.6	610	Akail	ke criterion	709.322	1
Schwarz criterion	714.8	119	Hanna	an-Quinn	711.550	4
rho	0.532	378	Durb:	in-Watson	0.93639	5

Model 6: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Exp_Alum

	coeffic	ient	std.	erro	t-ra	tio 	p-value	
const	-0.0614	302	0.70	56018	-0.0	8019	0.9362	
W2	8.3691	6	4.74	1 272	1.7	65	0.0803	*
Mean depender	nt var	0.1568	396	s.D.	depende	nt var	8.181	593
Sum squared 1	resid	7426.3	39	S.E.	of regr	ession	8.106	776
R-squared		0.0268	318	Adjus	sted R-s	quared	0.018	206
F(1, 113)		3.1139	932	P-va	lue(F)		0.080	327
Log-likelihoo	od	-402.82	297	Akaił	ce crite	rion	809.6	593
Schwarz crite	erion	815.14	1 92	Hanna	an-Quinn		811.8	376
rho		0.5510	034	Durb:	in-Watso:	n	0.9023	290

Model 7: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Exp_Iron

	coefficient	std.	error	t-ratio	p-value
const	-0.0509786	0.6	60556	-0.07718	0.9386
W2	1.10443	4.08	3976	0.2700	0.7876
Mean depender	nt var -0.0	22167	s.D.	dependent var	6.962189
Sum squared 1	resid 552	2.253	S.E.	of regression	6.990672
R-squared	0.0	00645	Adjus	ted R-squared	-0.008199
F(1, 113)	0.0)72925	P-val	ue(F)	0.787617
Log-likeliho	od -385	5.7954	Akaik	e criterion	775.5909
Schwarz crite	erion 781	.0808	Hanna	n-Quinn	777.8192
rho	0.4	31188	Durbi	n-Watson	1.134309

Model 8: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Exp_Co

	coefficie	nt std.	error	t-ratio	p-value
const	0.430250	0.6	61544	0.6504	0.5168
W2	-6.67113	4.0	9588	-1.629	0.1062
Mean dependen	t var 0.	256221	s.D.	dependent va	r 7.051688
Sum squared r	esid 53	538.770	S.E.	of regression	n 7.001119
R-squared	0	.022938	Adjus	ted R-squared	d 0.014291
F(1, 113)	2	.652806	P-val	ue(F)	0.106152
Log-likelihoo	d –38	35.9672	Akaik	e criterion	775.9344
Schwarz crite	rion 78	31.4242	Hanna	n-Quinn	778.1627
rho	0	.199708	Durbi	n-Watson	1.592559

Model 9: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Imp_Alum

coeffi	cient	std.	error	t-ratio	p-value	
const 0.53	0447	1.0	3901	0.5105	0.6107	
₩2 -7.17	264	6.4	3290	-1.115	0.2672	
Mean dependent var	0.343	334	s.D.	dependent va	r 11.007	54
Sum squared resid	13662	.59	S.E.	of regressio	n 10.9958	31
R-squared	0.010	882	Adjus	sted R-square	d 0.00212	29
F(1, 113)	1.243	212	P-val	lue(F)	0.2672:	19
Log-likelihood	-437.8	833	Akaik	te criterion	879.76	66
Schwarz criterion	885.2	565	Hanns	an-Quinn	881.994	49
rho	0.262	882	Durbi	in-Watson	1.4092	77

Model 10: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Imp_Iron

	coeffic	ient	std.	error	t-rati	.o p-	value
const	0.878	 386	2.3	3494	0.376	i4 O.	 7073
W2	-14.866	1	14.4	£565	-1.028	0.	3060
Mean depender	nt var	0.4910	76	s.D.	dependent	var	24.71692
Sum squared m	resid	68999.	90	S.E.	of regres	sion	24.71070
R-squared		0.0092	71	Adjus	sted R-squ	lared	0.000504
F(1, 113)		1.0574	58	P-val	ue(F)		0.305992
Log-likelihoo	od ·	-531.00	13	Akaik	ce criteri	on	1066.003
Schwarz crite	erion	1071.4	92	Hanns	an-Quinn		1068.231
rho		0.3625	91	Durbi	n-Watson		1.246537

Model 11: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Imp_Co

co	Defficient	std.	error	t-ratio	p-value	
const -	-0.182981	0.40	55680	-0.3929	0.6951	
W2	7.68821	2.88	3321	2.667	0.0088	***
Mean dependent	var 0.017	581	s.D.	dependent var	5.058	3646
Sum squared res	sid 2744.	549	S.E.	of regression	n 4. 928	3290
R-squared	0.059	200	Adjus	ted R-squared	1 0.050)874
F(1, 113)	7.110	9486	P-val	ue(F)	0.008	3788
Log-likelihood	-345.5	5932	Akaik	e criterion	695.1	1865
Schwarz criteri	ion 700.6	5763	Hanna	n-Quinn	697.4	148
rho	0.191	.292	Durbi	n-Watson	1.583	3548

Model 12: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_TT_Alum

	coefficient	std. error	t-ratio	p-value
const	-0.287891	1.04743	-0.2749	0.7839
W2	8.35390	6.48502	1.288	0.2003

Mean dependent var	-0.069963	S.D. dependent var	11.11693
Sum squared resid	13884.91	S.E. of regression	11.08491
R-squared	0.014473	Adjusted R-squared	0.005751
F(1, 113)	1.659417	P-value(F)	0.200314
Log-likelihood	-438.8114	Akaike criterion	881.6228
Schwarz criterion	887.1127	Hannan-Quinn	883.8511
rho	0.385090	Durbin-Watson	1.203499

Model 13: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_TT_Iron

cc	oefficient	std.	error	t-ratio	p-value
const -	-0.335271	1.14	1267	-0.2934	0.7697
W2	6.63632	7.07	7470	0.9380	0.3502
Mean dependent	var -0.162	150	s.D.	dependent var	12.08648
Sum squared res	sid 16524	.79	S.E.	of regression	12.09285
R-squared	0.007	727	Adjus	ted R-squared	l -0.001055
F(1, 113)	0.8799	910	P-val	ue(F)	0.350227
Log-likelihood	-448.8	198	Akaik	e criterion	901.6396
Schwarz criter:	ion 907.12	295	Hanna	n-Quinn	903.8679
rho	0.195	216	Durbi	n-Watson	1.590229

Model 14: OLS, using observations 2013:07-2023:01 (T = 115)
Dependent variable: mc_TT_Co

CO	efficient	std.	error	t-ratio	p-value	
const (D.454751	0.71	L6244	0.6349	0.5268	
W2 -9	9.85901	4.43	455	-2.223	0.0282	* *
Mean dependent v	var 0.1975	559	s.D.	dependent var	7.709	9977
Sum squared res:	id 6492.5	593	S.E.	of regression	1 7.580	0012
R-squared	0.0419	908	Adjus	ted R-squared	ŧ 0.033	3429
F(1, 113)	4.9427	746	P-val	ue(F)	0.028	3190
Log-likelihood	-395.10	033	Akaik	e criterion	794.2	2067
Schwarz criterio	on 799.69	965	Hanna	n-Quinn	796.4	1350
rho	0.0671	L49	Durbi	n-Watson	1.839	9531

ANNEX 4

Regression $\hat{y}_t = a_0 + a_2 \cdot Wt + \varepsilon_t$

Model 15: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_G_Alum

co:	efficient	std.	error	t-ratio	p-value	
const -	0.338486	0.629	9285	-0.5379	0.5917	
W1_t	0.144648	0.035	50995	4.121	7.22e-05	***
Mean dependent	var 0.0803	364	S.D. dep	pendent va	r 7.1112	283
Sum squared res	id 5011.'	773	S.E. of	regression	n 6.659'	727
R-squared	0.130	658	Adjuste	d R-squared	d 0.1229	965
F(1, 113)	16.98	338	P-value	(F)	0.0000	072
Log-likelihood	-380.23	182	Akaike (criterion	764.43	363
Schwarz criteri	on 769.92	262	Hannan-(Quinn	766.60	546
rho	0.524	111	Durbin-	Watson	0.9488	315

Model 16: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_G_Iron

	coeffic	ient	std.	erron	t-ratio	p-value
const	0.2018	322	1.150	070	0.1754	0.8611
W1_t	0.0424	436	0.064	1824	0.6613	0.5098
Mean depender	nt var	0.3247	724	s.D.	dependent va	r 12.14779
Sum squared r	resid	16757.	.99	s.e.	of regressio	n 12.17788
R-squared		0.0038	355	Adjus	sted R-square	d -0.004960
F(1, 113)		0.4373	312	P-val	lue(F)	0.509769
Log-likelihoo	od	-449.62	256	Akaił	te criterion	903.2512
Schwarz crite	erion	908.74	1 11	Hanns	an-Quinn	905.4795
rho		0.6723	367	Durbi	in-Watson	0.652494

Model 17: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_G_Co

	coefficient	std. error	t-ratio	p-value
const	-0.117493	0.495152	-0.2373	0.8129
W1_t	0.0347431	0.0276180	1.258	0.2110

Mean dependent var	-0.016889	S.D. dependent var	5.253568
Sum squared resid	3102.941	S.E. of regression	5.240196
R-squared	0.013811	Adjusted R-squared	0.005084
F(1, 113)	1.582539	P-value(F)	0.210989
Log-likelihood	-352.6504	Akaike criterion	709.3008
Schwarz criterion	714.7907	Hannan-Quinn	711.5291
rho	0.532379	Durbin-Watson	0.936393

Model 18: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Exp_Alum

const -0.0637208 0.765795 -0.08321 0.933 W2_t 0.0755086 0.0423322 1.784 0.077	ue
W2_t 0.0755086 0.0423322 1.784 0.077	8
	2 *
Mean dependent var 0.156896 S.D. dependent var 8.1	81593
Sum squared resid 7422.011 S.E. of regression 8.1	04413
R-squared 0.027385 Adjusted R-squared 0.0	18778
F(1, 113) 3.181642 P-value(F) 0.0	77154
Log-likelihood -402.7961 Akaike criterion 809	.5923
Schwarz criterion 815.0821 Hannan-Quinn 811	.8206
rho 0.551061 Durbin-Watson 0.9	02241

Model 19: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Exp_Iron

coeffi	cient	std.	error	t-ratio	p-value
const -0.052 W2_t 0.010	6468 4319	0.660 0.036)531 55133	-0.07970 0.2857	0.9366 0.7756
Mean dependent var	-0.022	167	s.D.	dependent var	6.962189
Sum squared resid	5521.0	828	S.E.	of regression	6.990403
R-squared	0.000	722	Adjus	sted R-squared	-0.008121
F(1, 113)	0.081	625	P-val	lue(F)	0.775630
Log-likelihood	-385.7	910	Akaił	te criterion	775.5821
Schwarz criterion	781.0	719	Hanns	an-Quinn	777.8104
rho	0.431	038	Durbi	in-Watson	1.134602

Model 20: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Exp_Co

	coefficient	std. error	t-ratio	p-value
const	0.429386	0.661620	0.6490	0.5177
W2_t	-0.0592679	0.0365735	-1.621	0.1079

Mean dependent var	0.256221	S.D. dependent var	7.051688
Sum squared resid	5540.051	S.E. of regression	7.001928
R-squared	0.022712	Adjusted R-squared	0.014063
F(1, 113)	2.626065	P-value(F)	0.107909
Log-likelihood	-385.9805	Akaike criterion	775.9610
Schwarz criterion	781.4508	Hannan-Quinn	778.1893
rho	0.199662	Durbin-Watson	1.592648

Model 21: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Imp_Alum

coeff	icient	std.	erro	t-ratio	p-value
const 0.52	7481	1.039	919	0.5076	0.6127
W2_t -0.06	30265	0.05	74449	-1.097	0.2749
Mean dependent var	0.343	334	s.D.	dependent var	: 11.00754
Sum squared resid	13667	.31	S.E.	of regression	n 10.99771
R-squared	0.010	541	Adjus	sted R-squared	ł 0.001784
F(1, 113)	1.203	768	P-va.	lue(F)	0.274902
Log-likelihood	-437.9	032	Akail	te criterion	879.8063
Schwarz criterion	885.2	962	Hanna	an-Quinn	882.0346
rho	0.262	612	Durb	in-Watson	1.409774

Model 22: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Imp_Iron

	coeffic:	ient	std.	error	t-ratio	o p-v	7alue
const	0.8793	321	2.33	491	0.376	6 0.7	7072
W2_t	-0.1328	381	0.12	9071	-1.030	0.3	054
Mean dependen	t var	0.4910	76	s.D.	dependent	var	24.71692
Sum squared r	esid	68998.	42	S.E.	of regress	sion	24.71043
R-squared		0.0092	93	Adjus	sted R-squa	ared	0.000525
F(1, 113)		1.0599	09	P-val	ue(F)		0.305434
Log-likelihoo	d -	-531.00	01	Akaik	ce criterio	on	1066.000
Schwarz crite	rion	1071.4	90	Hanna	n-Quinn		1068.228
rho		0.3625	99	Durbi	n-Watson		1.246522

Model 23: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Imp_Co

	coeffic	ient	std.	erroi	t-ratio	p-value	2
const	-0.1818	37	0.465	5845	-0.3903	0.6970	-
W2_t	0.0682	532	0.025	57514	2.650	0.0092	***
Mean depender	nt var	0.0175	581	s.D.	dependent v	7ar 5.03	58646
Sum squared 1	resid	2746.5	504	S.E.	of regress:	ion 4.93	30045
R-squared		0.0583	529	Adjus	sted R-squar	red 0.0	50198
F(1, 113)		7.0249	992	P-val	lue(F)	0.00	09191
Log-likelihoo	od	-345.63	342	Akai}	ce criterion	n 695	.2683
Schwarz crite	erion	700.75	582	Hanns	an-Quinn	697	.4966
rho		0.1912	278	Durb	in-Watson	1.5	33595

Model 24: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_TT_λ lum

	coeffi	cient	std.	erro	t-rat	io	p-value	
const	-0.287	450	1.04	746	-0.27	744	0.7843	
W2_t	0.074	4375	0.05	79021	1.28	36	0.2012	
Mean depende	ent var	-0.0699	963	s.D.	depender	nt var	11.11	.693
Sum squared	resid		.72	s.E.	of regre	ession	11.08	3524

Sam Squarea resta	10000.12	N.L. OF regression	11.00021
R-squared	0.014415	Adjusted R-squared	0.005693
F(1, 113)	1.652701	P-value(F)	0.201220
Log-likelihood	-438.8148	Akaike criterion	881.6295
Schwarz criterion	887.1194	Hannan-Quinn	883.8578
rho	0.384884	Durbin-Watson	1.203890

Model 25: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_TT_Iron

	coeffic	ient	std.	error	t-ratio) p-v	alue
const	-0.3366	93 93	1.142	:59	-0.2947	, 0.7	688
W2_t	0.0597	396	0.063	1612	0.9458	3 0.3	463
Mean depender	nt var	-0.162:	150	s.D.	dependent	var	12.08648
Sum squared 1	resid	16522.	.66	S.E.	of regress	ion	12.09207
R-squared		0.0078	355	Adjus	ted R-squa	ared -	0.000926
F(1, 113)		0.8945	590	P-val	ue(F)		0.346255
Log-likelihoo	od -	-448.8:	124	Akaik	e criterio	n	901.6248
Schwarz crite	erion	907.13	147	Hanns	n-Quinn		903.8531
rho		0.1952	241	Durbi	n-Watson		1.590176

ANNEX 5

Regression
$$\hat{y}_t = a_0 + a_1 \cdot W + a_2 \cdot Wt + \varepsilon_t$$

Model 27: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_G_Alum

	coeffic	ient	std.	error	t-ratio	p-value	
 const W1 W1_t	-0.33 -847.90 7.78)7257)9 }305	0. 518.9 4.	624686 908 67472	-0.5399 -1.634 1.665	0.5903 0.1051 0.0987	*
Mean depende Sum squared R-squared F(2, 112) Log-likeliho Schwarz crit rho	ent var resid ood cerion	0.080 4895 0.150 9.952 -378.8 771.9 0.524	D364 .076 D900 2209 3635 9617 4680	S.D. S.E. Adjus P-val Akaik Hanna Durbi	dependent v of regression ted R-squar ue(F) e criterion n-Quinn n-Watson	ar 7.11 on 6.61 ed 0.13 0.00 763. 767. 0.94	1283 1054 5738 0105 7269 0694 7610
Model 28: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_G_Iron coefficient std. error t-ratio p-value							
const W1 W1_t	0.202 -325.722 2.97(294 2 572	1.1 959.6 8.6	5523 19 4497	0.1751 -0.3394 0.3443	0.8613 0.7349 0.7312	

Mean dependent var	0.324724	S.D. dependent var	12.14779
Sum squared resid	16740.77	S.E. of regression	12.22584
R-squared	0.004879	Adjusted R-squared	-0.012891
F(2, 112)	0.274550	P-value(F)	0.760424
Log-likelihood	-449.5665	Akaike criterion	905.1330
Schwarz criterion	913.3678	Hannan-Quinn	908.4754
rho	0.670680	Durbin-Watson	0.655866

Model 29: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_G_Co

	coefficient	std. error	t-ratio	p-value
const	-0.116830	0.494626	-0.2362	0.8137
W1	-457.618	410.871	-1.114	0.2678
W1_t	4.15720	3.70144	1.123	0.2638

Mean dependent var	-0.016889	S.D. dependent var	5.253568
Sum squared resid	3068.950	S.E. of regression	5.234629
R-squared	0.024615	Adjusted R-squared	0.007197
F(2, 112)	1.413200	P-value(F)	0.247669
Log-likelihood	-352.0171	Akaike criterion	710.0341
Schwarz criterion	718.2689	Hannan-Quinn	713.3766
rho	0.533553	Durbin-Watson	0.934104

Model 30: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Exp_Alum

coef	ficient	std. error	t-ratio	p-value	
	.0614302	0.747508	-0.08218	0.9347	
W2 -1609	.14	626.527	-2.568	0.0115	**
₩2_t 14	.4420	5.59384	2.582	0.0111	**
Mean dependent var	0.15689	6 S.D. depe	endent var	8.181593	3
Sum squared resid	7009.19	5 S.E. of 1	regression	7.910885	5
R-squared	0.08148	2 Adjusted	R-squared	0.065080)
F(2, 112)	4.96780	2 P-value(B	7)	0.008568	3
Log-likelihood	-399.505	6 Akaike cı	riterion	805.0112	2
Schwarz criterion	813.245	9 Hannan-Qu	linn	808.3530	5
rho	0.48787	1 Durbin-Wa	atson	1.022912	2

Model 31: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Exp_Iron

	coeff	icient	std.	er	ror	t-ratio	 p-value	
const	-0.	0509786	ο.	650:	186	-0.07841	 0.9376	
W2	-1171.9	92	544.	956		-2.150	0.0337	* *
W2_t	10.	4735	4.	865	54	2.153	0.0335	**
Mean depend	ent var	-0.02216	7 S	.D.	deper	ndent var	6.962189	9
Sum squared	resid	5302.86	6 S	.Е.	of re	egression	6.880917	7
R-squared		0.04034	7 A	dju	sted 1	R-squared	0.023210)
F(2, 112)		2.35442	8 P	-va.	lue(F)	l	0.099631	L
Log-likelih	ood	-383.464	5 A	kail	ke cr:	iterion	772.9290)
Schwarz cri	terion	781.163	8 Н	anna	an-Qu:	inn	776.2714	ł
rho		0.44732	8 D	urb	in-Va	cson	1.102402	2

Model 32: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Exp_Co

	coefficient	std. error	t-ratio	p-value
const	0.430250	0.661035	0.6509	0.5165
W2	-606.995	554.049	-1.096	0.2756
W2_t	5.36004	4.94673	1.084	0.2809
_				

Mean dependent var	0.256221	S.D. dependent var	7.051688
Sum squared resid	5481.310	S.E. of regression	6.995732
R-squared	0.033074	Adjusted R-squared	0.015807
F(2, 112)	1.915489	P-value(F)	0.152063
Log-likelihood	-385.3676	Akaike criterion	776.7351
Schwarz criterion	784.9699	Hannan-Quinn	780.0776
rho	0.213617	Durbin-Watson	1.565031

Model 33: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Imp_Alum

	coefficient	std. error	t-ratio	p-value	
const	0.530447	1.01705	0.5216	0.6030	
W2	-2083.25	852.445	-2.444	0.0161	**
W2_t	18.5364	7.61091	2.436	0.0164	**
Mean denen	dent ver 0.3433	334 S.D. de	enendent var	11 00'	754

nean dependent var	0.040004	S.D. dependent var	11.00/04
Sum squared resid	12975.40	S.E. of regression	10.76345
R-squared	0.060633	Adjusted R-squared	0.043858
F(2, 112)	3.614582	P-value(F)	0.030115
Log-likelihood	-434.9159	Akaike criterion	875.8318
Schwarz criterion	884.0666	Hannan-Quinn	879.1743
rho	0.280034	Durbin-Watson	1.374935

Model 34: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Imp_Iron

 coefficient
 std. error
 t-ratio
 p-value

 const
 0.878886
 2.34506
 0.3748
 0.7085

 W2
 305.172
 1965.53
 0.1553
 0.8769

 W2_t
 -2.85748
 17.5489
 -0.1628
 0.8709

Mean dependent var	0.491076	S.D. dependent var	24.71692
Sum squared resid	68983.57	S.E. of regression	24.81783
R-squared	0.009506	Adjusted R-squared	-0.008182
F(2, 112)	0.537431	P-value(F)	0.585746
Log-likelihood	-530.9877	Akaike criterion	1067.975
Schwarz criterion	1076.210	Hannan-Quinn	1071.318
rho	0.362561	Durbin-Watson	1.246585

Model 35: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_Imp_Co

	coefficient	std. error	t-ratio	p-value	
const	-0.182981	0.459067	-0.3986	0.6910	
W2	803.558	384.769	2.088	0.0390	**
W2_t	-7.10598	3.43535	-2.068	0.0409	**

Mean dependent var	0.017581	S.D. dependent var	5.058646
Sum squared resid	2643.559	S.E. of regression	4.858313
R-squared	0.093818	Adjusted R-squared	0.077636
F(2, 112)	5.797722	P-value(F)	0.004019
Log-likelihood	-343.4375	Akaike criterion	692.8750
Schwarz criterion	701.1098	Hannan-Quinn	696.2175
rho	0.210006	Durbin-Watson	1.546805

Model 36: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_TT_Alum

	coefficient	std. error	t-ratio	p-value
const	-0.287891	1.05154	-0.2738	0.7848
W2	309.823	881.354	0.3515	0.7259
W2_t	-2.69169	7.86902	-0.3421	0.7329

Mean dependent var	-0.069963	S.D. dependent var	11.11693
Sum squared resid	13870.42	S.E. of regression	11.12848
R-squared	0.015501	Adjusted R-squared	-0.002079
F(2, 112)	0.881728	P-value(F)	0.416921
Log-likelihood	-438.7514	Akaike criterion	883.5027
Schwarz criterion	891.7375	Hannan-Quinn	886.8452
rho	0.391135	Durbin-Watson	1.191974

Model 37: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_TT_Iron

 coefficient
 std. error
 t-ratio
 p-value

 const
 -0.335271
 1.14214
 -0.2935
 0.7696

 W2
 -999.108
 957.291
 -1.044
 0.2989

 W2_t
 8.97986
 8.54701
 1.051
 0.2957

Mean dependent var	-0.162150	S.D. dependent var	12.08648
Sum squared resid	16363.51	S.E. of regression	12.08730
R-squared	0.017411	Adjusted R-squared	-0.000135
F(2, 112)	0.992285	P-value(F)	0.373964
Log-likelihood	-448.2559	Akaike criterion	902.5117
Schwarz criterion	910.7465	Hannan-Quinn	905.8542
rho	0.195981	Durbin-Watson	1.588537

Model 38: OLS, using observations 2013:07-2023:01 (T = 115) Dependent variable: mc_TT_Co

ient :	std.	error	t-ratio	p-value
4751	0.7	12737	0.6380	0.5248
'O !	597.3	83	-1.471	0.1442
635	5.3	3363	1.454	0.1487
0.1975	59	s.D.	dependent var	7.709977
6372.27	71	S.E.	of regression	7.542896
0.0596	64	Adjus	ted R-squared	0.042872
3.5531	53	P-val	ue(F)	0.031905
-394.027	77	Akaik	e criterion	794.0555
802.290	D3	Hanna	n-Quinn	797.3979
0.0801	64	Durbi	n-Watson	1.813784
	ient 4751 0 635 0.1975 6372.2 0.0596 3.5531 -394.02 802.29 0.0801	ient std. 4751 0.7 0 597.3 635 5.3 0.197559 6372.271 0.059664 3.553153 -394.0277 802.2903 0.080164	<pre>:ient std. error </pre>	<pre>sient std. error t-ratio 4751 0.712737 0.6380 0 597.383 -1.471 6635 5.33363 1.454 0.197559 S.D. dependent var 6372.271 S.E. of regression 0.059664 Adjusted R-squared 3.553153 P-value(F) -394.0277 Akaike criterion 802.2903 Hannan-Quinn 0.080164 Durbin-Watson</pre>