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Chapter 1. INTRODUCTION

1.1 Background

The war in Ukraine had an impact not only on the Ukrainian economy, but
also on global markets. Commodity markets reacted strongly to the beginning of the
war. Prices in the metal markets also showed sharp dynamics. There is no doubt
among economists that oil and gas prices have changed significantly due to
geopolitical factors, but there is no consensus on the dynamics of metal prices.
Therefore, there is a problem of determining the statistical significance of the impact

of war on metal prices.
1.2 Purpose

The purpose of this thesis is to identify the statistical impact of the fact of the
beginning of the war between Russia and Ukraine on the prices of three metals:
aluminum, iron ore and copper. For this purpose, global metal prices, as well as
Ukrainian export and import prices and their ratio (terms of trade) should be

analyzed.
The thesis proposes the following four hypotheses:

Hypothesis 1. The start of the Russian-Ukrainian war on February 24, 2022

had a statistically significant impact on world metal prices (aluminum, iron ore,

copper).

Hypothesis 2. The start of the Russian-Ukrainian war on February 24, 2022
had a statistically significant impact on Ukrainian export prices of metals (aluminum
and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of

the Classifier of Foreign Trade of Ukraine, respectively).

Hypothesis 3. The start of the Russian-Ukrainian war on February 24, 2022

had a statistically significant impact on Ukrainian export prices of metals (aluminum



and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of

the Classifier of Foreign Trade of Ukraine, respectively).

Hypothesis 4. The start of the Russian-Ukrainian war on February 24, 2022
had a statistically significant impact on the tirms of Ukraine's trade in metals
(aluminum and its products, ferrous metals, copper and its products - groups 76, 72

and 74 of the Classifier of Foreign Trade of Ukraine, respectively).
1.3 Methodology

Time series research methods are used to test the stated hypotheses. Using
time series decomposition in the dynamics of metal prices, an outlier corresponding
in time to the beginning of the war is identified. After removing the trend component
and the cyclical component from the time series, the irregular component and the
war beginning outlier remain in the time series. Identification of the trend component
and cyclic component is performed using moving average smoothing. The
stationarity of the irregular component is checked using the augmented Dickey-Fuller
test. A linear regression containing a dummy variable is used to test the statistical
significance of the effect of the war starting. If the effect of the beginning of the war
dominates price dynamics, then the corresponding coefficient in the regression

equation should be statistically significant.
1.4 Scope and Limitations

The paper focuses on the price dynamics of only three metals (aluminum,
coppet, iron) and the results cannot be extended to all other metals. The methodology
used in this paper makes sense under the assumption that in the first months of the
war the effect of the war was the dominant factor in the dynamics of metal prices.
The identification of the period of influence of the war effect on metal prices in the
work is justified in general terms, so it is possible that in some particular cases some
individual factors were not taken into account. The historical data for the study

includes metal prices from 2012 to 2023 and monthly indices from 2012 to 2023; the



author does not exclude that expanding or narrowing the length of the time series

may slightly change the results of the work.
1.5 Outline

The thesis is divided into six chapters. Chapter 2 describes the recent trends
of the metal prices on the global market and in foreign trade of Ukraine. The ways in
which the war affects the price of metals are presented here. The phases in the price
dynamics of each metal are analysed. In chapter 3 the main components of the time
series are analysed. The algorithm for isolating the war effect component is also
described. This chapter also contains the justification for the period of influence of
the war effect on metal prices. Chapter 4 describes the data used in the study. In
chapter 5 the empirical results are presented and analysed. Chapter 6 presents and

discusses the final conclusions and recommendations.



Chapter 2. INDUSTRY OVERVIEW AND RELATED STUDIES

2.1 Mechanisms of influence of the full-scale phase of the Russian-Ukrainian

war (from 2022) on the prices of aluminum, copper and iron ore.

The war in Ukraine since the end of February 2022 have had uneven impacts
on commodity markets. The effects were most pronounced in the oil, natural gas,
fertilizer and grain markets. Metals markets have been under less pressure. The
heterogeneity of the impact of the war on different commodities is due to a

combination of the following factors:

- the possibility of redirecting sanctioned Russian exports through other

countties;

- the amount of raw material stocks that can be used for the period of supply

disruptions;

- the potential for an urgent increase in commodity production in other

counttries;
- market sensitivity to the war-induced decline in demand.

At the beginning of 2022, Russia's share in global aluminum exports was
estimated at 4.2% (according to JPMorgan). In this regard, the sanctions imposed on
Russian aluminum exports had an impact on global aluminum prices. Alumina
imports were also restricted due to the refusal of supplies from Australia, the largest
importer of alumina to Russia. In February, Rusal suspended production at its
alumina refinery in Ukraine. Combined, these led to the loss of 2/3 of Russian

imports Alumina.

Russian copper exports accounted for about 3.3% of global exports.
Although the EU has not imposed sanctions on Russian copper, Russian producers
have been subject to blocking sanctions by the United States. And the largest importer

of copper in Europe, Aurubis, refused to extend contracts with Russian producers,



as a result of which Russian copper exports to Europe fell from 27.9 thousand tons
in January 2022 to 7.7 thousand tons by May 2023. However, the main decline in
imports occurred in 2023, and in 2022, according to Eurostat, there was even a
slight increase in imports (301.6 thousand tons in 2022 compared to 294.5 thousand
tons in 2021). Thus, the shock in the medical market from the war and sanctions

restrictions for 2022 was moderate or even weak.

According to the World Bank, in 2021, Ukraine ranked 4th in the world ($3.9
billion) in terms of the value of iron ore exports, second only to Australia ($115.2
billion), Brazil ($40.7 billion) and Canada ($5.4 billion). In 2022, Ukraine's exports
decreased to $2.9 billion, behind South Africa, Sweden and China in addition to the
three leaders. After the start Russia's armed invasion due to the blockade of seaports,
exports have been restricted. Ukraine redirected part of its iron ore exports to
European countries, however, due to increased logistics costs by rail and lower prices
on the world market, production was reduced. On the other hand, the war caused a
significant increase in energy costs for metal producers. Steel producers who import
iron ore, in an effort to reduce increased costs, reduced production, or tried to find

cheaper suppliers of ore, which pushed world iron ore prices down.
2.2 Literature review

Numerous studies have explored the economic consequences of armed
conflicts on domestic markets, sector incomes, and world market prices in various
contexts. These studies provide valuable insights and serve as a foundation for
understanding the potential effects of the war on the metallurgy sector in Ukraine.

The following are three relevant studies that shed light on similar themes:

"The Economic Impact of Armed Conflict and the Price of Violence" by Paul

Collier and Anke Hoeffler (2004):

This study examines the economic consequences of armed conflicts, focusing
on the impact on economic growth, domestic investment, and capital accumulation.

It highlights the negative effects of conflict on wvarious sectors, including



manufacturing, agriculture, and trade. The study emphasizes the importance of
restoring economic stability and rebuilding infrastructure in post-conflict situations

to foster sustainable development.

"The Effects of Conflict on Local Taxation: Evidence from the War in Iraq"

by Ryan S. Jablonski (2015):

This research investigates the effects of the war in Iraq on local tax revenues,
a crucial source of income for local governments. The study finds that armed conflict
disrupts tax collection mechanisms, leading to significant declines in revenue. It
emphasizes the importance of understanding the fiscal implications of conflict and

developing strategies to mitigate the adverse effects on local economies.

"The Impact of Political Conflict on Trade: Evidence from the Ukraine

Crisis" by Sergey Kiselev and Philip Ushchev (2017):

This study analyzes the impact of the Ukraine crisis on international trade,
focusing on the trade relationship between Ukraine and its major trading partners.
The research finds substantial negative effects of the conflict on bilateral trade flows,
highlighting the disruption of supply chains, increased trade costs, and reduced
market access. The study emphasizes the importance of diversifying trade partners

and developing resilient trade strategies in conflict-affected regions.

These studies offer insightful information about the financial effects of armed
conflicts and market disruptions on both domestic and international markets.
Although they might not particularly address the Ukrainian metallurgical industry,
they do provide pertinent approaches, frameworks, and factors to take into account
when analyzing how the war has affected domestic prices, sector earnings, and global

market prices.

By concentrating on the influence of the conflict on domestic pricing and
sector incomes in Ukraine's metallurgy industry, as well as its implications for world
market prices, the current thesis seeks to close the knowledge gap by building on the

findings and techniques of these research. This study aims to offer a thorough analysis



of the economic effects of the war in the industry by taking into account the special

context of Ukraine and its importance in the global metallurgical market.
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Charper 3. METHODOLOGY

3.1 Hypotheses tested in this paper:

Hypothesis 1. The start of the Russian-Ukrainian war on February 24, 2022

had a statistically significant impact on world metal prices (aluminum, iron ore,

copper).

Hypothesis 2. The start of the Russian-Ukrainian war on February 24, 2022
had a statistically significant impact on Ukrainian export prices of metals (aluminum
and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of

the Classifier of Foreign Trade of Ukraine, respectively).

Hypothesis 3. The start of the Russian-Ukrainian war on February 24, 2022
had a statistically significant impact on Ukrainian export prices of metals (aluminum
and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of

the Classifier of Foreign Trade of Ukraine, respectively).

Hypothesis 4. The start of the Russian-Ukrainian war on February 24, 2022 had
a statistically significant impact on the tirms of Ukraine's trade in metals (aluminum
and its products, ferrous metals, copper and its products - groups 76, 72 and 74 of
the Classifier of Foreign Trade of Ukraine, respectively).

3.2 The main components of the time series of metal prices.

Cyclic component C;. As the graphical analysis of the dynamics of prices for

aluminum, copper and iron ore in 2013-2023 in the world market and in Ukraine's
foreign trade showed, the cyclical component is the leading component of the time
series. Particularly striking cycles stand out in the dynamics of wotld prices and the
dynamics of export prices in Ukraine, where 3-4 major cycles are noted. According
to the time series charts of the terms of trading in metals in Ukraine, cyclicality is not

traced.

Seasonal component S,. The study of autocorrelation functions for the initial

world prices of aluminum, copper, and iron ore does not reveal monthly seasonality

(lag = 12), since the corresponding ACF coefficients are not statistically significant
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at the significance level of 0.05 (Figure 1). Similar conclusions are made on the basis
of the analysis of Ukraine's export prices according to the Paasche price index by
the base year 2012. In import price indices, an autocorrelation with a lag of 12 is
observed for iron, since in January 2015 there was an abnormal value of the import
price index for this metal. At the same time, the nature of the anomaly of this value
remains unclear.
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Figure 1. Autocorrelation functions for nominal metal prices with Bartlett 95%
standard errors

Trend component T;. It is not possible to identify a stable trend component

that plays a leading role in the time series of metal prices (at least in the time interval
2013-2020). It is possible to consider short-term trends within a particular cycle,

however, in this case, the trend component plays a secondary role, not the leading
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one. In the event that the trend component played a leading role and cyclical
components are secondary, visually on the chart, cycles would follow the trend, and
not vice versa.

Irregular component E;. This component is counted as a residual component

after excluding the cyclical, seasonal and trend components. Since seasonality and
visible trend are not clearly observed in the time series, the main task is to filter the
cyclic component.

3.3 The algorithm for identifying the shock component — the impact of
the beginning of the large-scale phase of the Russian-Ukrainian war.

Along with the main components, metal prices can include shock components
of individual geopolitical or other events that have a short-term but very significant
impact on the price. Among such events in recent years, the COVID-19 pandemic
(or, more precisely, the reaction of society to the pandemic in the form of restrictive
measures, in particular, lockdowns, which have direct economic consequences), as
well as Russia's armed invasion of Ukraine in February 2022, stand out. Both events
are shocks to the economy, as they are unpredictable both in terms of the duration
of the impact and the expected consequences. The reaction of markets to such shocks
is most evident in commodity prices, in particular, metals, since market participants
often factor in all possible risks of consequences, thereby multiplying the effect of
the shock factor.

To assess the impact of the shock component, the following sequence of
analysis seems appropriate:

Stage 1. Isolation of the cyclic component. It can be carried out in different
ways. In this paper, a centered moving average with a smoothing period of t=12
months is used for filtering.

Stage 2. Testing of the residual component for stationarity. Since only the
random and shock components should remain after the cyclic component is
excluded, the part of the time series where the shock component should not occur
chronologically is checked using the single root test (the Augmented Dickey-Fuller

test). In the case of nonstationarity, the most appropriate filtering method is selected.
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Stage 3. Estimation of the duration of the shock component. Typically, this is
a relatively short period of time during which the shock factor is dominant in the
markets.

Stage 4. Estimating the significance of the shock component using the
following yeat's regression:

Ve=ap+a, WHa, - W-t+eg,

where ¥, is the time seties of basic metal price indices with cyclical, trend and
seasonal components excluded (i.e. stationary series + shock components);

W — fictitious variable of the war (equal to 0 in the period before and after the
impact of the shock of the beginning of the war, 1 during the period of the market
shock);

t — period number (month number in order, January 2013 t=1);

& — irregular component, regression residuals;

Ao, A1, A, - Least squares regression parameters.

The inclusion of the factor in the regression along with the W factor (W - t) is
caused by the need to assess the impact of the shock for several periods (months) in
case of uneven distribution of the impact within the estimated critical period.

Along with the extended form, abbreviated regressions ¥ = ag +a, - W -t +
gand P =ag+a; W+ &.

The statistical significance of at least one of the coefficients a,,a, will be
equivalent to the statistical significance of the impact of the war shock on the price
of the corresponding metal.

3.4 Estimation of the duration of the shock component.

In order to assess the duration of the shock effect of the beginning of the war,
it is necessary to select such a critical point (bifurcation point) at which the effect of
other important factors in the dynamics of metal prices begins to outweigh the shock
effect. These are, first of all, the following factors:

a) Inflationary consequences of excessive money printing as part of aid
programs during the period of pandemic restrictions.

b) The second wave of lockdowns in China (the closure of Shanghai and some

other cities), which sharply reduced economic activity in China, the largest consumer
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of metals in the world. China's industrial production index decreased by -2.9% in
April 2022 (compared to April 2021). In March-April, the Shanghai Composite stock
index lost about 12% of its capitalization.

¢) Economic consequences of high energy prices for the industry of European
developed countries. In particular, in Germany, industrial production in March 2022
decreased by -3.5% (compared to the previous year), in April it decreased by -2.2%,
in May it decreased by -1.5%.

d) Decisive measures taken by central banks to combat high inflation. On
March 16, the Fed began a cycle of rate hikes (to 0.5% on March 16, to 1% on May
4, to 1.75% on June 15 and beyond during the second half of 2022 and in 2023 to a
high of 5.5% on July 26, 2023).

It is also necessary to take into account the methodological difference in the
world prices used and the prices of Ukraine's foreign trade. World metal prices are
exchange quotations of world commodity exchanges (in fact, momentary levels of
the time series), so the shock effect of the beginning of the war began to be laid down
at the end of February (that is, it was taken into account in the price index for
February 2022). Ukraine's export and import prices are taken into account in the
weighted average aggregate indices, and since only 5 out of 28 days in February fall
on hostilities, the shock effect of February is reflected in the prices of Ukraine's
foreign trade very insignificantly.

Taking into account the above factors, the interval from February to April 2022
(W1) was taken as the time range for taking into account the shock component of
the war for world prices, and the interval from March to May 2022 (W) was taken

for foreign trade prices in Ukraine.
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Chapter 4. DATA

4.1 Dynamics of world prices for aluminum, copper and iron ore in

2013-2023 and since the beginning of the war in 2022.

In 2013-2020, world aluminium prices showed relatively restrained volatility,
deviating to +20% from 2012 prices when growing and up to -30% from 2012 prices
when decreasing. Several price cycles in aluminium can be distinguished: a short cycle
in 2013-2014 (up to 110% at the peak of 2014), a downward wave in 2015-2017 (to -
30% at a low in 2016), The most significant volatility in aluminum prices was
observed in the 2021-2023 cycle, when the price reached up to +60% at the 2022
high from 2012 levels, which can be considered the result of the influence of the

global inflationary processes in conjunction with the Russian-Ukrainian war (Figure

2).
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Figure 2. Global prices of the metals in the years 2013-2023, % to 2012 (the yellow
area shows the first 4 months of the war)

The dynamics of global copper prices compared to aluminium have been
more resilient to declines over the past decade. After a prolonged decline in 2013-
2016, global copper prices fell below 60% of 2012 levels, then recovered to 90% of
2012 levels by 2018, and then fell significantly again to 60% levels at the beginning of
the pandemic in 2020. Since 2021, copper prices have grown dynamically, reaching

130% of 2012 levels in mid-2021. In the second half of 2021, copper prices stabilized
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at around 120% before retreating to 100% in the second half of 2022. The beginning
of the military conflict did not have a visible noticeable impact on world copper prices

(or temporarily restrained them from falling).

Iron ore showed the most significant fluctuations in the dynamics of its world
prices among the three metals under consideration (up to 30% at the lows and up to
160% at the highs from the 2012 levels). In 2013-2016, there was a phase of decline
in world prices, in 2016-2021 - a phase of growth in world prices for iron ore, and

from the second half of 2021 - a sharp decline in world prices.

In the first months of the war, world iron ore prices showed only a slight
decline, while during 2022 as a whole, the price of copper stabilized at 80-90% of the
base year of 2012. In general, the dynamics charts show a more significant impact of

the war on world aluminum prices than on the prices of copper and iron ore.

4.2 Dynamics of export and import prices of Ukraine, as well as terms
of trade of aluminum, copperand iron ores in 2013-2023 and since the

beginning of the war in 2022.

In 2013-2020, export prices of all three metals showed a similar cyclicality: a
decline by 2016, then an increase by 2018 and a decrease by 2020. Since 2021,
aluminum export prices have shown an increase of up to 160% from 2012 levels, then
decline by the beginning of 2022 and, with the beginning of the war, show a
noticeable increase in the first half of 2022. Copper and iron ore in 2021 showed only
moderate growth from 80% to 120% of 2012 levels, while in the first months of the
war they moved with multidirectional monthly dynamics with a general downward
trend. Thus, graphically, there is a noticeable impact of the war on the export prices
of aluminum and, to some extent, iron ore, in the dynamics of copper export prices,

the impact of the war is not discernible (Figure 3).
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Figure 3. Export prices of the metals in Ukraine in the years 2013-2023, % to 2012
(the yellow area shows the first 4 months of the war)

Compared to exports, Ukraine's imports of metals show a much more

significant price fluctuation with an upward trend in recent years. In general, the

phases of growth and decline repeated the phases in export prices. However, the most

noticeable dynamics since 2021 showed import prices not only for aluminum, but

also for iron ore (up to 200% compared to the level of 2012). In the price dynamics,

there is a noticeable impact of the war on import prices of aluminum, and to a lesser

extent - in import prices of copper (Figure 4).
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The ratio of export prices of the metals under consideration to imports in

Ukraine showed extremely high intra-year fluctuations between months, while since
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2015 there has been a noticeable downward trend in the terms of trade for copper
and ferrous metals. The effect of war on the terms of trade is difficult to determine

graphically, and it is necessary to test the relevant statistical hypotheses (Figure 5).
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Chapter 5. RESULTS

The market shock from the beginning of the large-scale phase of the Russian-
Ukrainian war was statistically significant (at the 0.95 confidence level) for global
aluminum prices (the impact is high because the P-level is very low). In the model
y(W) for coefficient a; P-level is 7.6:107, in the model y(Wt) for coefficient a, P-level
is 7.2°10°, and in the model y(W,Wt) both coefficients a; and a, are statistically
insignificant at the level of 0.05 (P-level 0.105 and 0.099 for parameters a; and a,
respectively). Thus, one parameter was sufficient to identify the impact of the
beginning of the war on world aluminum prices. The extremely low P-level value for
the first two models indicates that world aluminum prices were very sensitive to the
shock from the beginning of the war.

The contribution of the shock component of the beginning of the war to the
dynamics of global iron ore prices cannot be recognized as statistically significant in
any of the considered modifications of the models: in the model y(W) for the
coefficient a; P-level is 0.511, in the model y(Wt) for the coefficient a, P-level is 0.510,
and in the model y(W,Wt) both coefficients a; and a, turned out to be statistically
insignificant at the level of 0.05 (P-level 0.735 and 0.731 for parameters a; and a,
respectively). Thus, no significant effect of the war in the dynamics of global iron ore
prices was found.

The contribution of the shock component of the beginning of the war to the
dynamics of global copper prices also cannot be recognized as statistically significant
in any of the considered modifications of the models: in the model y(W) for the
coefficient a; P-level is 0.214, in the model y(Wt) for the coefficient a, P-level is 0.211,
and in the model y(W,Wt) both coefficients a; and a, turned out to be statistically
insignificant at the level of 0.05 (P-level 0.268 and 0.264 for parameters al and a2,
respectively). Thus, no significant effect of the war in the dynamics of world copper

prices was also found (Table 1).
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Table 1. Levels of Significance of Metal Price Regression Coefficients (Global
Market and Exports of Ukraine)

Global Market Export
Regression Options
& P Aluminum Iron Copper | Aluminum Iron Copper

ore ore
y=a0+al*W P(al) 7,6¥10-> 0,511 0,214 0,08 0,788 0,106
y=a0+a2*¥Wt P(a2) 7,2%10-> 0,510 0,211 0,077 0,766 0,108
P(al) 0,105 0,735 0,268 0,012 0,034 0,276

y=a0+al*W+a2*Wt

P(a2) 0,099 0,731 0,264 0,011 0,034 0,281

Aluminum export prices in Ukraine were significantly affected by the effect of
the beginning of the war. This is not reflected in the y(W) model, where the P-level
of coefficient a; is 0.08 > 0.05, nor is it reflected in the y(Wt) model, where the P-
level of coefficient a, was 0.077 > 0.05. However, in the y(W,Wt) model, both
coefficients a; and a2 are statistically significant (P; = 0.012 < 0.05 and P, = 0.011 <
0.05). Moreover, since a, = 14.44 > 0, the war caused an upward effect in the export
prices of aluminum in Ukraine.

Export prices of iron in Ukraine were significantly affected by the effect of the
beginning of the war. This is not reflected in the y(W) model, where the P-level of
the coefficient a; is 0.788 > 0.05, nor is it reflected in the y(Wt) model, where the P-
level of the coefficient a; is 0.766 > 0.05. However, in the y(W,Wt) model, both
coefficients a; and a, are statistically significant (P; = 0.034 < 0.05 and P, = 0.034 <
0.05). In this case, since a; = 10.47 > 0, the war caused an increase in iron export
prices in Ukraine.

Export prices of copper in Ukraine did not react significantly to the beginning
of the war: in the model y(W) p-level for coefficient a; is 0.106 > 0.05, in the model
y(Wt) p-level for coefficient a, is 0.108 > 0.05, in the model y(W,Wt) both coefticients
are not statistically significant, as Py = 0.276 > 0.05, P, = 0.281 > 0.05.

Import prices of aluminum in Ukraine changed significantly under the effect of
the beginning of the war. This is not reflected in the model y(W), where the P-level
of coefficient a; is 0.267 > 0.05, nor is it reflected in the model y(Wt), where the P-
level of coefficient a is 0.275 > 0.05. However, in the y(W,Wt) model, both

coefficients a; and a; were statistically significant (P1 = 0.016 < 0.05 and P, = 0.016
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< 0.05). At the same time, since a; = 18.54 > 0, the war caused a growth effect in
import prices of aluminum in Ukraine (Table 2).

Table 2. Levels of Significance of Metal Price Regression Coefficients (Ukraine's
Imports and Terms of Trade)

Import Trading Condition
Regression Options
& P Aluminum Iron Copper | Aluminum Iron Copper
ore ore
y=a0+al*W P(al) 0,267 0,306 | 0,0088 0,200 0,350 | 0,028
y=a0+a2*¥Wt P(a2) 0,275 0,305 | 0,0092 0,201 0,346 | 0,029
P(al) 0,016 0,877 | 0,039 0,726 0,299 | 0,144
y=a0+al*W+a2*Wt
P(a2) 0,016 0,871 | 0,041 0,733 0,296 | 0,149

Import prices of iron in Ukraine did not react significantly to the beginning of
the war: in the model y(W) p-level for coefficient a; is 0.306 > 0.05, in the model
y(Wt) p-level for coefficient a2 is 0.305 > 0.05, in the model y(W,Wt) both coefficients
are not statistically significant as P; = 0.877 > 0.05, P, = 0.871 > 0.05.

Import prices of copper in Ukraine were found to be sensitive to the shock
from the beginning of the war. In the model y(W) P-level for coefficient a; is 0.0088
< 0.05, in the model y(Wt) P-level for coefficient a, is 0.0092 < 0.05, and in the model
y(W,Wt) the significance levels for the coefficients are P; = 0.039 < 0.05 and P, =
0.041 < 0.05. In this case, since the value of coefficient 2, = -7.11 < 0, the war led to
a decrease in import prices for copper in Ukraine.

The terms of trade shows the relationship between export and import prices.
If export prices change unidirectionally together with import prices, then even if the
war effect is statistically significant separately for export prices and separately for
import prices, it is likely that these dynamics will cancel each other out for the value
of the terms of trade. In case of differently directed significant changes in export and
import prices, on the contrary, there will be an amplification of the effect for the
terms of trade. If there is a significant change for one of the components (export
prices or import prices), the effect for the terms of trade can be either statistically
significant or statistically insignificant, it can be revealed only by testing the statistical
hypothesis.

Ukraine's terms of trade for aluminum turned out to be insensitive to the shock

from the beginning of the war, for the model y(W) P-level for coefficient a; is 0.200
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> (.05, for the model y(Wt) P-level for coefficient a, is 0.201 > 0.05, for the model
y(W,Wt) both coefficients turned out to be statistically insignificant as P; = 0.726 >
0.05 and P, = 0.733 > 0.05. Thus, the significant change (increase) in aluminum
export prices and the significant change (increase) in aluminum import prices
mutually offset the effect of war on the terms of trade for aluminum.

Ukraine's terms of trade for iron turned out to be insensitive to the shock from
the beginning of the war, for the model y(W) P-level for coefficient a; is 0.350 > 0.05,
for the model y(Wt) P-level for coetficient a, is 0.346 > 0.05, for the model y(W,Wt)
both coefficients turned out to be statistically insignificant as Py = 0.299 > 0.05 and
P, = 0.296 > 0.05. Thus, a significant change (increase) in iron export prices in the
absence of a significant change in import prices did not result in a statistically
significant change in the terms of trade for iron.

Under the influence of a significant increase in import prices for copper, at
which export prices showed no significant dynamics in the first months of the war,
the terms of trade for copper showed a significant decline. This is evidenced by a
negative significant regression coefficient a; = -9.86 < 0 (p = 0.028 < 0.05) for the
y(W) model and a negative significant regression coefficient a, = -0.088 < 0 (p =

0.029 < 0.05) for the y(Wt) model.
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Chapter 6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Main conclusions of the study.

The hypothesis testing has shown that the war had a strong impact on global
aluminum prices. This is consistent with the mechanisms of influence transmission
described above (expectations of a sharp reduction in supplies due to sanctions and
others). World iron ore and copper prices in February-April 2022 showed the
expected dynamics within their cycle and did not show sharp changes associated with
the Russian-Ukrainian war.

For Ukraine's foreign trade, the beginning of the war had a more dramatic
impact on metal prices. A moderate impact is noted in export prices of aluminum and
ferrous metals. The war also had a noticeable and statistically significant impact on
the growth of import prices of copper. In this regard, the already long declining terms
of trade for copper have been markedly reduced by the beginning of the war.

Comparison of sensitivity of world prices and prices of Ukraine's foreign trade
to the shock of the beginning of the war allows us to draw the following conclusions:

1) Aluminum prices both on the world market and in Ukraine's foreign trade
(exports and imports) were characterized by a significant sensitivity to the war shock,
while the effect in world aluminum prices was noticeably higher. The direction of
movement of aluminum prices in all markets is growth. The terms of trade for
aluminum in Ukraine did not change significantly, as the growth in export and import
prices was statistically comparable.

2) World prices for iron ore did not show noticeable dynamics, also import
prices for iron in Ukraine did not show noticeable dynamics. However, export prices
for iron showed significant growth. Such results show, on the one hand, the
decreasing influence of Ukrainian iron ore exports on the world market, on the other
hand, they demonstrate the severity of the problems that led to an increase in the
price of iron exports directly due to the hostilities on the territory of the country.

3) The copper price has not been significantly affected by the beginning of the

military conflict on the world market, nor has it affected Ukrainian copper export
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prices. However, Ukraine's copper import prices reacted significantly to the war
shock, which also affected Ukraine's copper terms of trade.

6.2 Significance of the Russian-Ukrainian military conflict against the
background of other factors shaping metal prices on the world market.

Among the three metals under consideration, only aluminum reacted with a
significant price increase on the world market as a result of the shock from the
beginning of the Russian-Ukrainian war, no statistically significant changes in iron ore
and copper prices were found. In addition, within the cyclical dynamics of world
prices, the duration of the shock from the impact of the war is limited to
approximately three months. In general, the dynamics of all three metals show the
following phase patterns: (1) price declines or extremely weak dynamics in the first
months of the coronavirus pandemic (February-April 2020; (2) significant price
increases in 2021, driven by the global economic recovery and the injection of money
by the Federal Reserve and the European Central Bank; (3) some acceleration of
growth or delayed price declines in the first months of the war; and (4) declines in
metal prices in the second half of 2022 to the first half of 2023, influenced by the
slowdown in China's economy and the global economy. The graphs of dynamics
(Appendix 1) show that the most significant change in metal prices occurs in phases
(2) and (4), and the impact of the war in phase (3), firstly, short-term in time, and
secondly, not sustainable in impact. Thus, the impact of global factors (changes in
global demand, monetary factors in major economies and others) looks like a much
more significant driver of metal prices than the Russian-Ukrainian war.

6.3 Ways of using the results obtained in the work.

The obtained results of the study can be applied in a number of directions,
among which the following can be noted:

1) War risks insurance. Despite the fact that in property insurance of many
countries military-political events are regarded as an extreme force majeure
circumstance and serve as an exception for the payment of insurance compensation
for loss or damage to property, the demand for war risk insurance is increasingly
growing and stimulates the expansion of the list of insurance types by adding war risk

insurance. An example of one of the largest organizations insuring direct investments
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against military risks is the Multilateral Investment Guarantee Agency (MIGA), a
member of the World Bank Group. During 2022, the agency provided guarantees for
54 projects worth $4.9 billion. The American International Development Finance
Corporation (DFC) is also engaged in war risk insurance. It specializes in supporting
investors who are willing to invest in high-risk countries. DFC was established in
December 2019, since then it has provided guarantees for 4 thousand projects, the
total amount of investments in which amounted to $200 billion. Such companies are
usually professionally engaged in calculating the degree of military risk both for
individual countries and for individual industries and groups of goods.

When assessing the risk of war, the coefficients with the dummy variable W
can serve as a basis for taking into account the relative dynamics of metal prices. In
this case, the coefficients are comparable for comparing the dynamics of metal prices
among themselves, since all regression models are calculated by percentage changes
to a single base period. For example, from Appendix 3, the obtained values of
coefficients al: 16.0 for aluminum, 4.7 for iron ore and 3.8 for copper show that the
risk of war for world aluminum prices is about 3.4 times higher than for iron ore and
4.2 times higher than for copper.

2) Accounting for military risks in international contracts. Military risks are
being incorporated into international export-import contracts more and more often,
especially in the foreign trade practice of Ukraine, where a legislative basis is being
created for this purpose. Ukrainian draft law No. 9015 amends the law "On Financial
Mechanisms to Stimulate Export Activity" No. 1792-VIII and authorizes the Export
Credit Agency (ECA) to insure and reinsure direct investments in Ukraine against
risks that may be caused by armed aggression, hostilities and/or terrorism. ECA acts
as a guarantor of fulfillment of foreign economic contracts, factoring agreements,
letters of credit, etc. If, for example, a company wants to take out a loan to finance
an export contract, the bank will not grant the loan without insurance, which ECA
can provide. In order to assess risks and calculate insurance premiums, organizations
such as ECAs may need industry-specific risk ratios, which can be derived from the

results of this paper.
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3) Accounting for military risks in metal exchange trading. In order to diversify
investments in commodities and metals in particular, it may be necessary to calculate
the mean square deviation of metal price quotations. The dynamics of metal prices,
except for the trend and cyclical component, includes the variation caused by military
and political factors. The coefficients calculated in this paper can be used to calculate
the overall risk in exchange trading of metals and financial derivatives linked to metal

prices.
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ANNEX 1

Smoothing Time Series with a 12-Month Centered Simple Moving Average
G_Alum, G_Iron, G_Co for basic indices of world prices;
Exp_Alum, Exp _Iron, Exp _Co — for basic indices of export prices of Ukraine;
Imp_Alum, Imp _Iron, Imp _Co — for basic indices of import prices of Ukraine;

TT_Alum, TT _Iron, TT _Co — for basic indices of the terms of trade of Ukraine.
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ANNEX 2

Checking the Stationarity of Smoothed Series Using the Dickey-Fuller Test

bugmented Dickey-Fuller test for me G Alum
including 2 lags of (1-L)mc & Alwum

sample size 112

unit-root null hypothesis: a = 1

test without constant

model: [(1-L)v = [(a-1)*y(-1) + ... + &
ezatimated value of (a - 11: -0.599611

test statistie: tau ne(l] = -6.20842
asymptotic p-value 1.505e2-009

lst-order autocorrelation coeff. for e: -0.037
lagged differences: F(2, 109) = 4.236 [0.0169]

Augmented Dickey-Fuller test for mc G Iron
including 2 lags of (1-Limc G Tron

sample size 112

unit-root mull hypothesis: a = 1

Lest without constant

model: (1-L)vy = [(a-1)*%yi(-1) + ... + &
eztimated value of (a - 11: -0.539739

test statistie: tau ne(l) = -6.83651
asymwptotic p-wvalue 3.394e-011

lst-order autocorrelation coeff. for =: -0.037
lagged differences: F (2, 109) = 15.755 | [0.0000]

bugmented Dickey-Fuller test for me & Co
including 2 lags of (1-Ljmec & Co

sample size 112

unit-root null hypothesis: a = 1

test without constant

model: [(1-L)v = [(a-1)*y(-1) + ... + &
estimated value of (a - 11: -0.773628

test statistic: tau ne(l) = -7.90826
asymptotic p-value S.236e-014

lzt-order asutocorrelation coeff. for e: -0.040
lagged differences: F(2, 109) = 12,422 |[0.0000]
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Augmented Dickey-Fuller test for mc Exp Alum
including 2 lags of (1-Ljmc Exp Alum

sample size 112

unit-root null hypothesis: a = 1

test without constant

model: [(1-L)v = [(a-1)*y(-1) + ... + &
eztimated wvalue of (a - 1): -0.684518

test statistic: tau nefl) = -6.85064
asymptotic p-wvalue 4.166e-011

lst-order autocorrelation coeff. for e: -0.109
lagged differences: F(2, 109) = 8.700 [0.0003]

Lugmented Dickey-Fuller test for mc_ Exp Iron
including 2 lags of (1-Ljmc Exp Iron

sample size 112

unit-root null hypothesis: a = 1

test without constant

model: [(1-L)v = [(a-1)%yi(-1) + ... + &
eztimated wvalue of [(a - 1): -1.15572
test statistic: tau nel(l) = -10.15397

asywptotic p-wvalue 5.454e-020
lzt—-order gutocorrelation coeff. for e: 0.037
lagged differences: Fi2, 109) = Z8.924 |[0.0000]

bugmented Dickey-Fuller test for me Exp Co
including 5 lags of [(1-L)mz Exp Co

Sample =ize 109

unit-root mull hypothe=zis: a = 1

Lest without constant

model: [(1-L1v = [(a-1)*%vyi-1) + ... + &
estimated value of (a — 11: -1.02658
test statistic: tau ne(l) = -4.5305

asyhptotic p-wvalue 5.25e-006
lst—-order sutocorrelation coeff. for e: 0.076
lagged differences: F(5, 103) = 5.031 [0.0003]

lugmented Dickey-Fuller test for mce Imp ALlum
including 2 lags of (1-Limc Imp Alum

sample size 112

unit-root null hypothezis: a = 1

test without constant

model: [(1-L)y = [(a-1)1*vi-1) + ... + &
eatimated value of (a - 1): —-1.33275

test statistic: tau ne(l) = -2.05046
asymptotic p-value 6.083=-017

lst-order autocorrelation coeff. for e: -0.123
lagged differences: F(2, 109) = 15.279 |[[0.0000]
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Augmented Dickey-Fuller test for me Imp Iron
including 5 lags of (1-Ljwmc Imp Iron

sample si=ze 102

unit-root null hypothesis: a = 1

Lezat without constant

model: [(1-L)v = [(a-1)*vi-1) + ... + &
estimated walue of (a - 1): -1.4625
test statistic: tau ne{l) = -7.036859

asymptotic p—wvalue 1.428e-011

lst—-order autocorrelation coeff. for e: -0.057
lagged differences: F(5, 103) = 5.473 [0.0002]

bugmented Dickey-Fuller test for we Imp Co
including 2 lags of (1-Ljmc Imp Co

sample size 112

unit-root null hypothesis: a = 1

test without constant

model: (1-L1yv = [(a-1)%yi(-1) + ... + &
estimated value of (a - 11: —-1.1543
test statistic: tau ne(l) = -7.60477

asymptotic p-value 5.056e-013
lzt-order autocorrelation coeff. for e: 0.000
lagged differences: F(2, 109) = 7.8046 [0.0007]

Augmented Dickey-Fuller test for me TT Alum
including 2 lags of (1-Ljmc TT Alum

sample size 112

unit-root null hypothesis: a = 1

test without constant

model: [(1-L)v = [(a-1)*y(-1) + ... + &
estimated wvalue of (a - 1): -1.06238

test statistic: tau nefl) = -5.15514
asymptotic p-wvalue 1.543e=-014

lst-order autocorrelation coeff. for =: -0.075
lagged differences: F(2, 102) = 14.655 |[[0.0000]

Lugmented Dickey-Fuller test for we TT Iron
including 5 lags of (1-Ljwc TT Iron

sample size 109

unit-root null hypothesis: a = 1

test without constant

model: (1-L1v = [(a-1)*yi-1) + ... + &
ezatimated value of (a - 11: -1.82615
test statistic: tau ne(l) = -59.572Z15

asymptotic p-value 2.515e-018
lzt—-order autocorrelation coeff. for e: -0.148
lagged differences: Fi(5, 1031 = 10.991 [0.0000]
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Augmented Dickey-Fuller test for mc TT Co
including 5 lags of (1-Ljmc TT <o

sample si=ze 109

unit-root null hypothesis: a = 1

test without constant

model: [(1-L)v = (a-1)*y(-1) + ... + &
eztimated value of (a - 1): -1.3305%5
Lest statistic: tau ne(l) = -5.31004

asymptotic p—value 1.641e-007
lzt-order sutocorrelation coeff. for e: 0.007
lagged differences: Fi(5, 103) = 2.942 |[[0.0160]
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ANNEX 3

Regtession J;

:a0+a1'W+$t

Model 1: OL3, using observations 2013:07-2023:01 (T = 115)
Dependent wvariable: mc G Llum
coefficient ztd. error tL-ratio p-value
CoOnst -0.337257 0.629565 -0.5357 0,593:2
Wi 15.0038 3.89738 4,107 7.61le-05 **%
Mean dependent war 0.0803 64 3.D. dependent war T.1112583
Sum squared resid 5016.227 3.E. of regression G.662687
FE-=zquared 0.129885 Adjusted R-sgquared 0.122185
Fii, 113) 16.867904 P—wvralue (F) 0.o0007s&
Log-likelihood -380.2693 bLkaike criterion Tad.55385
Gchuarez criterion TT0.0284 Hannan-Quinn ThE.TBES
rho 0.52395a Durbin-Watson 0.949131
Model 3: OL3, using observations 2013:07-2023:01 (T = 115)
Dependent wvariable: mc G Iron
coefficient ztd. error L-ratio p-wvalue
CoOnst 0.20z2294 1.15072 0.1755 0.5605
Wi 4.69314 T.12455 0.6557 0.5114
Mean dependent war 0.324724 Z.0. dependent war 12.14779
Sum squared resid 16755.49 Z.E. of regrezzion 1z.17506
FE-zquared 0.003825 Ldjusted R-sgquared -0.0049220
Fil, 113) 0.433922 FP—walue (F) 0.511411
Log-likelihood —-449,6273 Lkaike criterion Q03 .2546
Jchwarz criterion 05,7445 Hannan-ouinn 205.452Z9
rho O.e7237:2 urkbin-Watson 0.652485
Model 4: OLS, using okbservations 2013:07-2023:01 (T = 115)
Dependent wvariable: me & Co
coefficient std. error t—-ratio p—wvalue
const -0.116830 0.4951938 -0.2359 0.8139
wi 3.83107 3.065964 1.250 0.2140
Mean dependent wvar -0.015389 3.D. dependent war 5.253568
Jum squared resid 3103.515 3.E. of regression S.240651
E-zquared 0.013629 Adjusted PF-squared 0.004200
Fii, 113) 1.561365 P-walue (F) 0.214047
Log-likelihood -352.6610 Akaike criterion 09,3221
Jochwarz criterion T14.85119 Hannan-ouinn 711.5504
rho 0.532378 Durkin-Watson 0.936395
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Model &: OL3, uzing obzervations 2013:07-202353:01 (T = 115)
Dependent variable: mc_ Exp Llum
coefficient std. error L-ratio p-value
const -0.061435302 0.7ea015 -0.0s019 0.9362
w2 g5.38916 4. 73272 1.785 o.os0s
Mean dependent war 0.1565896 3.D. dependent war g.1581593
3um squared resid T326.339 3.E. of regression g.106776
B—=zquared 0.026515 Adjusted R-squared 0.013206
Fil, 113) 3.11393: FP—wvalue (F) o.050327
Log-likelihood —-402 ,8297 Akaike criterion G099, 6593
Jchwarz criterion 15,1492 Hannan-ouinn 511.5576
rhao 0.551034 Durbhin-WMat=son O.390z2930
Model 7: OL3, using okhservations 2013:07-2023:01 (T = 115)
Dependent wvariable: mc Exp Iron
coefficient std. error L-ratiao —wwalue
const -0.0509756 0.660556 -0.07%715 0.953586
e 1.10443 4.053976 o.z700 o.7587e
Mean dependent wvar -0.022167 3.0, dependent war 6.962159
Zum squared resid S5E22.253 3.E. of regrezzion 6.990672
FE-zgquared 0.000645 Adjusted F-squared -0.005192
Fil, 113) 0.072925 P—wvalue (F) o.757ely
Log—-likelihood —-385.7954 Akaike criterion TP5.5209
Jchwarez criterion T51.0805 Hannan-ouinn TYT.E19:2
rho 0.431185 Durkin-Watson 1.1343089
Model S: OL3, using okhservations 2013:07-2023:01 (T = 115)
Dependent wvariable: we Exp Co
coefficient 3td. error L-ratio p-value
const 0.430250 0.661544 0.6504 0.51a8
e -6.67113 4.09588 -1.629 0.10a62
Mean dependent wvar 0.256221 Z3.D. dependent war T.051688
Jum squared resid S538.770 Z.E. of regrezzion T.001119
FE-zquared 0.0222938 Adjusted R-squared 0.014291
Fil, 113) Z.652506 P—wvalue (F) 0.10615:2
Log-likelihood -385.9672 Akaike criterion TPL.95344
SJchwarzs criterion 751.4242 Hannan-guinn TTE.1627
rho 0.199708 Durbin-Watson 1.592559
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MHodel 9: OL3, using observations 2013:07-2023:01 (T 115)
Dependent variable: mc_ Tmp Llum
coefficient ztd. error L-ratio p-value
Cconst 0.530447 1.03901 0.5105 o.6107
w2 -7.17264 f.43290 -1.115 0.2672
Mean dependent <rar 0.343334 5.0, dependent war 11.00754
Sum squared resid 13662.59 3.E. of regression 10.99581
B—=quared 0.010882 bdjusted R-sguared 0.00z2129
Fii, 113) 1.243212 P-wvalue (F) n0.267219
Log-likelihood -437.8833 Lkaike criterion g79.7666
Jochwarz criterion §585.2565 Hannan-ouinn §51.9949
rho 0.26288:2 Durkin-Watson 1.409277
Model 10: OQOL3, uzsing ohservations 2013:07-2023:01 (T = 115)
Dependent wvariable: mc Twp Iron
coefficient std. error L-ratio p-value
Const 0.875886 Z2.33494 0.3764 o.7073
w2 -14.8661 14.4585 -1.0z28 0.30s0
Mean dependent war 0.421076 3.D. dependent war 24.71892
Sum squared resid 68999.90 3.E. of regression 24.71070
B—squared o.o009271 Adjusted R-sguared O.00o0504
Fii, 113) 1.057455 FP—walue (F) 0.305589:2
Log-likelihood -531.0013 Akaike criterion 1066.003
SJchwarz criterion 1071.49:2 Hannan-guinn 1065.231
rho 0.3682591 Durbhin-Watson 1.246537
Model 11: OQOLS3, using obserwvations 2013:07-Z023:01 (T = 115)
Dependent wvarisble: me_Imp Co
coefficient =2td. error t-ratio p-wvalue
Const -0.182981 0.465620 -0.3929 0.e6951
w2 7.68821 2.88321 2.667 0o.aogs w# %
Mean dependent <rar 0.017581 5.0, dependent war 5.052864d6
Sum squared resid 2744.549 3.E. of regression 4.923290
B—=quared o.052200 hdjusted R-sguared 0.050874
Fii, 113) T.110486 P-wvalue (F) o.oozv7as
Log-likelihood -345.5932 bkaike criterion 685.1865
Schwarz criterion 700.6763 Hannan-ouinn 697.4148
rho 0.1591292 Durkbin-Watson 1.5853548
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Hodel 12: OL3, uzsing okhservations 2013:07-2023:01 (T = 115)
Dependent wvariakble: mc TT Alum

coefficient 3td. error t-ratio p-walue
Cconst -0.257891 1.04743 -0.2749 0.7839
w2 2.35390 6. 45502 1.288 0.2003

Mean dependent war -0.069963 5.D0. dependent war 11.11693

Sum squared resid 138584.91 3.E. of regression 11.08491
F—squared 0.014473 Adjusted RB-squared 0.005751
Fil, 113) 1.659417 P-—wvalue (F) 0.z00314
Log—-likelihood -435.5114 Lkaike criterion 851.62285
Jochware criterion g37.1127 Hannan-Juinn g33.3511
rho 0.335020 Iurbin-TMatson 1.203493

Model 13: OL3, uzsing okhservations 2013:07V-2023:01 (T = 115)
Dependent wvariable: mc TT Iron

coefficient std. error t-ratio p—value
Const -0.335271 1.14287 -0.2934 o.7697
w2 G.E63632 7.07470 o.9380 0.3502

Mean dependent wvar -0.162150 3.D. dependent wvar 12 .05645

Zum squared resid 16524.79 J3.E. of regression 12.09285
FE-zquared 0.Q0vvav Adjusted R-squared -0.001055
Fil, 113) 0.572910 P—wvalue (F) 0.350227
Log-likelihood -445,8195 Akaike criterion 901.6396
Jochwarez criterion 207.1295 Hannan-ouinn 203.5678
rho 0.195216 Durbhin-Wat=on 1.590229

Model 14: OL3, using obhservations 2013:07-2023:01 (T = 115)
Dependent wvariable: me TT Co

coefficient ztd. error L-ratio p-value
COonst 0.454751 0.716244 0.6349 0.5265
wz -9.85901 4.43455 -2.223 o.0z2gz +%

Mean dependent wvar 0.197559 3.D. dependent wvar T.709977

Zum zquared re=zid 6492 593 Z3.E. of regre=z=zion T.5E0012
RE-=zquared 0.041202 Adjusted R-sguared 0.033429
Fii, 113) 4. 942746 P—walue (F) o.o0z28190
Log-likelihood -395.1033 bkaike criterion 794 . 2067
Gehwarz criterion 799, 6965 Hannan-guinn 796.4350
rho 0.0671489 Durbin-WMatson 1.839531
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ANNEX 4

Regtression Jy = ag + a, - Wt + &

MHodel 15: OQOL3, using ohservations 2013:07-2023:01 (T = 115)
Dependent wvariable: mc G Llum
coefficient std. error t-ratio p-wvalue

Cconst -0.335456 0.629285 -0.5379 0.5917%7

Wit 0.144645 0.0350995 4.121 T.2Ze-05 *+%
Hean dependent wvar 0.080364 3.D. dependent war 7.111253
Jum squared resid S011.773 3.E. of regression 6.659727
E-zquared 0.1306858 Ldjusted R-squared 0.122965
Fii, 113) 16.953385 FP—walue (F) o.oooo7s
Log-likelihood —-380.2182 Lkaike criterion TEed.4363
Jchwarz criterion Te9.926:2 Hannan-ouinn ToB.6646
rho 0.524111 Durbhin-Watson 0.945515
Model 16: OL3, using obserwvations 2013:07-2023:01 (T = 115)
Dependent wvariable: me & Iron

coefficient ztd. error L-ratio p-value

COnst 0.2015z22 1.15070 0.1754 0o.5611

mi 0.04249436 0.0641524 0.66135 0,.5095
Mean dependent wvar 0.324724 Z3.D. dependent war 12.14779
Sum squared resid 16757.99 J3.E. of regression 12.17788
E-zquared 0.003855 Adjusted R-squared -0.004960
Fii, 113) 0.43731=2 FP—wvalue (F) 0.509769
Log-likelihood -4439 ., 6256 Lkaike criterion Q03,2512
Jechwarz criterion Q05,7411 Hannan-iouinn 905.47935
rhao O.672367 Durbhin-Wat=son 0.652494
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Model 17: QOL3, using ohserwvations 2013:07-2023:01 (T = 11%)
Dependent wvariable: me & Co

coefficient ztd. error tL-ratio p-value
COonst -0,117493 0.4595152 -0.2373 0.5129
Wl t 0.0347431 0.0z27a150 1.258 o.2110

Mean dependent wvar -0.016389 3.D. dependent wvar S5.253568

Jum =squared resid 3102.9491 3.E. of regression 5.240196
E-zquared 0.013811 Adjusted R-squared 0.005054
Fii, 113) 1.582539 F-wvalue (F) 0.210959
Log-likelihood -352.68504 Akgike criterion 7093008
Gehwarz criterion 714.7907 Hannan-iouinn 711.5291
rhao 0.532379 Durbin-WMat=son 0.936393

Model 15: OL3, using chserwvations 2013:07-2023:01 (T = 115)
Dependent wvarisble: me Exp Alum

coefficient ztd. error t-ratio p-wvalue
Cconst -0.06372038 0.765795 -0.05321 0.93385
Wi t© 0.07550568 0.0423322 1.754 o.o77:s ow

Mean dependent wvar 0.156896 3.D. dependent war S.151593

Sum =squared resid T422.011 Z3.E. of regres=sion S.104413
BE-zquared 0.027385 Ldjusted R-=dquared 0.018778
Fii, 113) 3.181642 P—walue (F) 0.077154
Log-likelihood -402.7961 Lkgaike criterion S09. 5923
Schwarz criterion 815.0821 Hannan-ouinn 811.8206
rho 0.551061 Durbin-Watson 0.902241

Model 19: OL3, using chserwvations 2013:07-2023:01 (T = 115)
Dependent wvarisble: mc Exp Iron

coefficient std. error t-ratio p—value
const -0.0526465 0.660531 -0.07970 0.9366
Wz t 0.0104319 0.0365133 o.2857 o.7756

Mean dependent wvar -0.0Z2167 3.D. dependent war 6.962139

Sum squared resid 5521.828 3.E. of regression 6.990403
B—squared O.0a07z22 Adjusted R-sguared -0.005121
Fii, 113) 0.081625 P—walue (F) 0.775630
Log-likelihood -385.7910 Lkkgaike criterion 775 .EB21
Soehwarz criterion 781.07189 Hannan-ouinn 77,8104
rho 0.431038 Durbhin-Wat=son 1.134602
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Model 20: QOL3, using okhservations 2013:07-2023:01 (T = 11%5)
Dependent wvariable: mc Exp Co
coefficient ztd. error L-ratio p-value
Const 0.4293864 0.661620 0.6490 o.5177
wz t -0.0592679 0.0365735 -1.621 o.1075
Mean dependent war 0.256221 3.D. dependent war 7.0516885
S3um sqguared resid 5540.051 3.E. of regression 7.001928
B—=quared 0.022712 bdjusted R-sguared 0.014063
Fii, 113) 2.626065 P-walue (F) o.107909
Log-likelihood -385.9805 bkaike criterion 775.9610
Sehwarz criterion 781.4508 Hannan-ouinn 78,1893
rhao 0.199662 Durkbin-Wat=son 1.5926485
Model 21: OL3, using cohserwvations 2013:07-2Z023:01 (T = 115)
Dependent wvariable: me Imp Alum
coefficient std. error t-ratio p—wvalue
const 0.527481 1.03919 0.5076 o.e1z27
Wz £ -0.0630265 0.0574449 -1.09% 0.z2749
Mean dependent war 0.343334 3.D. dependent war 11.00754
Sum squared resid 13667.31 3.E. of regression 10.99771
B—=quared 0.010541 hdjusted R-sguared 0.001734
Fii, 113) 1.203768 P—walue (F) 0.274902
Log-likelihood -437.89032 bkaike criterion 879.8063
Schwarz criterion 885.2962 Hannan-ouinn 882.0346
rho 0.262612 Durbin-Watson 1.409774
Model 22: 0OL3, using obhservations 2013:07-2023:01 (T = 115)
Dependent wvariable: mz_ Twmp Tron
coefficient ztd. error L-ratio p-wvalue
Const o.879321 2.33491 0.3766 0.7072
w2 t -0.132881 0.12907%1 -1.030 0.3054
Mean dependent rar 0.491076 5.0, dependent ar 24.71e92
Zum z2quared re=zid EE905 . 42 3.E. of regres=sion 24.71043
E-zquared 0.002293 Adjusted R-squared 0.000525
Fii, 113) 1.059909 F-walue (F) 0.305434
Log-likelihood -531.0001 Akgaike criterion 106ea.000
Jochwarez criterion 1071.420 Hannan-iguinn 1065.225
rhao 0.3682539 urkhin-WMatson 1.24652:2
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Model 23: OL3, using chserwvations 2013:07-2023:01 (T = 115)
Dependent variable: mc Imp Co
coefficient ztd. error L-ratio p—value
Cconst -0.151837 0.465545 -0.3903 0.ae370
Wz © 0.0652532 0.0z257514 Z.650 o.o09s  w%F
Mean dependent war 0.0175s81 3.D. dependent wvar 5.058e84d6
Sum squared resid 2746.504 S5.E. of regression 4.930045
B—=quared 0.058529 Adjusted RB-sqguared 0.050198
Fii, 113) 7.0z24992 P—walue (F) 0.o09191
Log-likelihood -345.6342 bkaike criterion 6895.2683
Gehwarz criterion 70,7582 Hannan-guinn 627.4966
rho 0.121275 urkbin-Watson 1.553595
Model 24: OL3, uzsing ohservations 2013:07-2023:01 (T = 115)
Dependent wvariable: mc TT Alum
coefficient ztd. error L-ratio p-wvalue
CoOnst -0.257450 1.04746 -0.27434 0.7543
Wz © 0.0744375 o0.05790z1 1.286 0.2012
Mean dependent war -0.069963 3.D. dependent war 11.11693
Sum squared resid 13385.72 3.E. of regression 11.08524
F—squared 0.014415 Adjusted RB-sguared 0.005893
Fii, 113) 1.652701 P—walue (F) 0.201220
Log-likelihood -438.8148 Lkkgaike criterion 8281.6295
Schwarz criterion 8587.1194 Hannan-ouinn 883.8578
rho 0.35845854 Durbhin-Wat=son 1.203890
Model 25: 0QOL3, using observations 2013:07-2023:01 (T = 115)
Dependent variable: mc TT Iron
coefficient ztd. error t-ratio p-walue
Cconst -0.3366593 1.14259 -0.2947 0.7655
Wz © 0.0597396 0.0631612 0.94558 0.3463
Mean dependent war -0.162150 5.0, dependent war 12 .08648
Sum squared resid 16522.66 3.E. of regression 12.09207
B—=quared 0.007%855 bdjusted BE-sgquared -0.00082Z6
Fii, 113) 0.8924590 P-walue (F) 0.346255
Log-likelihood -445.5124 bkaike criterion S01.6248
Jochwarz criterion Q07,1147 Hannan-ouinn 2903.8531
rho 0.195241 Durkin-Watson 1.590176a
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Model Za: OLE,
Dependent wvariasble: me TT Co

using obhservations 2013:07-2023:01

(T

o.5z80
o.oz90 *+%
Fnni=l=iran
T.581611
0.033021
0.0z258975
To4,.2552
796, 4535

coefficient std. error t-ratio

Const 0.453500 0.7155394 o.&330

Wz t -0.05875935 0.03596014 -z.21z2
Mean dependent war 0.187559 3.D. dependent war
3um squared resid 5495.333 3.E. of regression
B—=quared 0.041504 hdjusted R-sguared
Fil, 113} 4,53929395 P—walue (F)
Log-likelihood -395.1276 bkaike criterion
Gechwarz criterion 7997450 Hannan-guinn
rho o.0e7177 Durbin-WMatson
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Model 27: QLS
Dependent war
COonst
wi
Wi t

Mean dependent wvar

Zum zquared -
E-zquared
Fi2, 112)
Log-likelihoo
Gehwarz crite

ANNEX 5

Regression Jy = ag+a W +a, - Wt + &

(T

115)

0.5903
0.1051
0.09s8%7

*

r 111233
ja}

d

611054
.135738
0.000105
PR3 .Y268
Tev.06594

7
&
]

, Using obserwvations 2013:07-2023:01
iahle: mc G Alum
coefficient ztd. error L-ratio
-0,337257 0.6246386 -0,539%9
—-547.909 515.903 -1.634
7.78305 467472 1.665
0.050364 3.D. dependent va
ezid 4895.076 3.E. of regressio
0.150200 Adju=sted R-=dquare
Q. aLzz209 P—wvalue (F)
d -378.86035 Algike criterion
rion TP1.9617 Hannan-Juinn
0.524620 Durbin-Watson

rho

Model Z5: OL3,
Dependent wvari

C

Mean dependent

Zum squared resid

FE-zquared
Fiz2, 112)
Log-likelihood
Schwarz criter

using obserwvations 2013:07-2023:01
gble: me G Iron

0.947610

(T = 115)

12.147%79
12 .22584
-0.012391
0.760424
205.1330
903 .4754

oefficient =td. error L-ratio
0.20z2294 1.158523 0.1751
—-325.722 Q59,619 -0.3394
Z2.97672 2.64497 0.3443
war 0.324724 3.D. dependent wvar
16740.77 3.E. of regression
0.004579 Adjusted R-squared
0.274550 F-wvalue (F)
-449 ., 5665 Lkaike criterion
ion 913.3678 Hannan-ouinn
0.e70680 Durbin-Wat=son

rho
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Model Z9:
Dependent

Mean dependent wvar
Sum squared resid
E-=zquared

Fiz, 112)

Log-likelihood
Jchwares criterion

rho

Model 30:

Mean dependent war
Jum squared resid

E-zquared

Fiz, 112}

Log-likelihood
Jochwarz criterion

rho

Model 31:

Hean dependent war
3um squared resid

E-zquared

Fiz, 112}

Log-likelihood
Jchwarz criterion

OL3, using cobhservations 2013:07-2023:01 (T = 115)
varishle: me G Co
coefficient std. error t-ratio p—wvalue
-0.116330 0.494626 -0.2362 o.8137
-457.618 410,871 -1.114 0.2e78
4.15720 3.70144 1.123 0.26838
-0.016889 3.D. dependent wvar 5.253568
J068.250 3.E. of regression 5.2346289
0.024615 Adjusted F-squared 0.007v197
1.413200 FP-wvalue (F) 0.247a669
-352.0171 bkaike criterion T10.05341
T15.2689 Hannan-ouinn T13.3766
0.533553 Iurhin-Watson 0.934104
OLS, using observations 2013:07-2023:01 (T = 115)
Dependent wvariable: me Exp Alum
coefficient =2td. error t-ratio p-walue
-0.0614302 0.747508 -0.08218 0.9347
-1609.14 BZ26.527 -2.568 o.o0115 %
14,4420 L.59354 2.582 o.o0o111  +«
0.156896 3.D. dependent wvar S.181593
To09,195 3.E. of regression T.910885
0.051452 Adjusted F-squared 0.065080
4.967502 F-wvalue (F) 0.008568
-399.5056 Lkaike criterion g05.011=2
§13.2459 Hannan-ouinn g05.3536
0.457571 Durhin-Watson 1.02291z2
OLS, uzing obhservations 2013:07V-2023:01 (T = 115)
Dependent wvariable: mz Exp Iron
coefficient std. error t-ratio p—value
-0.0509756 0.&650186 -0.07541 0.9376
-1i71i.9:2 544,956 -z2.150 o.0337 *+*
10.4735 4,56554 2.153 o.0335 ++#
-0.022167 3.0, dependent war 6.962189
S530Z.866 3.E. of regression 6.830917
0.040347 Adjusted R-squared 0.023210
Z.354425 F-walue (F) 0.099631
-383.4645 hkaike criterion TIZ.9290
T81.16838 Hannan-iouinn TI6.2714
0.447328 Durbhin-Wat=son 1.102402

rho
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Model 32: OL3, using cohserwvations 2013:07-2Z023:01 (T = 115)
Dependent wvariable: mc Exp Co
coefficient std. error t-ratio p—value
CoOnst 0.430250 0.661035 0.&6509 0.5165
wa —-606,9595 554,049 -1.096 0.2756
WMz © S5.36004 4,94673 1.0549 0.2809
Mean dependent war 0.256221 3.0, dependent war T.051688
Zum squared resid 5481.310 3.E. of regression 6.995732
F-zoquared 0.033074 hAdjusted R-sguared 0.015807
Fia, 112) 1.915459 FP-walue (F) 0.152063
Log-likelihood -335.3676 Akaike criterion TPe.T351
Gchwarz criterion T34.9699 Hannan-Qouinn TE0.0776
rho 0.213617 Durbin-Watson 1.565031
Model 33: OL3, using ohservations 2013:07-2023:01 (T = 115)
Dependent wvariable: mc Twp Alwum
coefficient ztd. error L-ratio p-wvalue
Cconst 0.530347 1.01705 0.5216 0.6030
w2 -z2083.25 852,445 -Z.444 0.0161 %
Wi © 15.5364 T.61091 2.436 0.0164 %
Hean dependent wvar 0.343334 3.D. dependent wvar 11.00754
Sum =squared re=sid 1z975.40 3.E. of regrez=zion 10.76345
E-zquared 0.060833 Adjusted R-=zquared 0.043858
Fi2, 112) 3.614582 P-walue (F) 0.030115
Log-likelihood -434,9159 Akgike criterion S75.8318
Schwarz criterion G584.0666 Hannan-iouinn 879.1743
rho 0.280034 Durbhin-WMat=zon 1.374935
Model 34: QOLS3, using obserwvations 2013:07-2023:01 (T = 115)
Dependent wvariable: me Imp Iron
coefficient std. error t-ratio p-wvalue
Const 0.8785886 34506 0.3745 0.7085
wz F05.172 1965.53 0,15535 0.5769
Wi t -2 .85745 17.54589 -0.1625 o.5709
Mean dependent wvar 0.421076 3.D. dependent wvar Z24.71692
Jum squared resid 6E953.57 3.E. of regression 24.81733
E-zquared 0.009506 Adjusted R-squared -0.00515:2
Fiz, 112) 0.537431 P-wvalue (F) 0.585746
Log-likelihood -530.9377 Lkaike criterion 10e7.975
Sehwarz criterion 1076.210 Hannan-ouinn 1071.318
rhao 0.362561 Durbhin-WMat=on 1.246585
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Model 35: OL3, using ohserwvations 2013:07-2023:01 (T = 115}
Dependent wvariable: me Imp Co
coefficient std. error t-ratio p-wvalue
Const -0.18z2981 0.459067 -0.39564 0.6210
wz 803,558 384,769 2.088 o.0390 ++
Wzt -7.105938 3.43535 -2.068 o.o0409 %
Mean dependent war o.017581 3.D. dependent war 5.05864¢6
3um sqguared resid 2643.559 3.E. of regression 4.858313
B—=zquared 0.083518 bdjusted R-sguared o.077636
Fiz, 112) E.797722 P-wvalue (F) 0.o004019
Log-likelihood -343.4375 bkaike criterion 6892 .8750
Gehwarz criterion 701.1095 Hannan-guinn 696.2175
rho O.210006 Durbin-Watson 1.546505
Model 36: OL3, using ohservations 2013:07-2023:01 (T = 115)
Dependent wvariable: mc TT Alum
coefficient =s=td. error t-ratio p—wvalue
Const -0.287891 1.05154 -0.2738 0.7845
wa 309,523 S51.354 0.3515 o,7259
Wi © -Z2.69169 T.56902 -0.3421 o,73z29
MHean dependent war -0.069963 3.0, dependent war 11.11693
Sum squared resid 13870.42 3.E. of regression 11.12548
E-zquared 0.015501 Adjusted R-sgquared -0.002079
Fia, 112) 0.551728 P—walue (F) 0.416921
Log-likelihood -435.7514 Akaike criterion S83.5027
Jochwarz criterion 91,7375 Hannan-iouinn G86.545:2
rho 0.391135 Durbhin-WMatson 1.191974
Model 37: OL3, using observations 2013:07-2023:01 (T = 115)
Dependent wvariable: mc TT Iron
coefficient =td. error L-ratio p-value
COnst -0.335271 1.14214 -0.2935 0.7696
wz -999.,108 a57.291 -1.044 0.2959
Wi t g.97956 g.54701 1.051 0.2957
Mean dependent wvar -0.162150 3.D. dependent war 12.08645
Jum squared resid 16363.51 3.E. of regression 12.08730
E-zquared 0o.017411 Adjusted F-squared -0.000135
Fia, 112) 0.992255 F-wvalue (F) 0.373964
Log-likelihood -345,2559 Akaike criterion Q02,5117
Jechwarz criterion 910.7465 Hannan-ouinn 905.554:2
rhao 0.1959581 Durbin-Wat=son 1.5588537
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Model 3&5: OQOL3,
Dependent variable: mc TT Co

uzing ohservations Z2013:07-2023:01

(T = 115)

0.5245
0.1442
0. 1437

LTaOe9TT
5425946
LO042872
031905
794.0555
79,3979
1.8137584

=
2
]
]

coefficient std. error L-ratio

Cconst 0,454751 0,712737 0. 6350

wz -575.570 597,353 -1.471

W © T.75635 5.33363 1.454
Hean dependent war 0.197559 3.D. dependent wvar
3Jum =squared resid B372.271 3.E. of regression
E-zquared 0.052664 Adjusted F-squared
Fia, 112) 3.553153 P-wvalue (F)
Log-likelihood -394, 0277 Akaike criterion
Gohwarz criterion g02.2903 Hannan-ouinn
rho 0.050164 Durbin-Wat=son
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