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Abstract

OPTIMAL PORTFOLIO HEDGING
IN A CRYPTOCURRENCY MARKET

by Yevhen Liubchenko

Thesis Supervisor: Professor Olesia Verchenko

The rapidly expanding cryptocurrency market has presented investors with

unique opportunities for portfolio diversification and capital appreciation. This

thesis investigates the dynamics of optimal portfolio hedging in the

cryptocurrency market, addressing the research question: “How can investors

optimally hedge their cryptocurrency portfolios with predictable cash flow to

minimize risk exposure and maximize returns while taking into account market

the unique characteristics of the digital asset ecosystem?” To answer this

question I analyze various derivatives-based hedging instruments, specifically

option-based and perps-based, and assess their effectiveness in mitigating risks

associated with cryptocurrency investments. The findings of this thesis will

provide investors with a comprehensive framework for managing risks in the

cryptocurrency market, contributing to the digital asset management literature.
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Chapter 1

INTRODUCTION

Over the past decade, the cryptocurrency market has rapidly expanded, evolving

into a prominent player in the global financial landscape. Attracting both retail

and institutional investors with its high returns and growing market

capitalization, cryptocurrencies have garnered significant interest.

As the market has matured, a variety of cash-flow-generating crypto assets has

emerged, with unique features and value propositions. This thesis focuses on a

portfolio comprising 12 such yield-generating crypto assets, where the weights

are determined based on their respective market capitalizations.

All of these assets exhibit a strong positive correlation with one another,

implying that their price movements tend to follow the same direction, thereby

increasing the need for effective risk management strategies.

Ethereum (ETH) plays a particularly important role in this context, as it is not

only a key component of the portfolio but also the only asset for which hedging

instruments are readily available in the market. The inherent volatility and

unique characteristics of the digital asset ecosystem present investors with

distinct challenges when it comes to managing risk and optimizing returns.

This thesis aims to explore the optimal strategies for hedging

cash-flow-generating cryptocurrency portfolios, considering the various factors

that influence risk exposure and return potential. The research question guiding

this study is: "How can investors optimally hedge their cash-flow-generating

cryptocurrency portfolios to minimize risk exposure and maximize returns

while taking into account the unique characteristics of the digital asset

ecosystem?"
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By investigating this research question, this thesis will contribute to the growing

body of literature on cryptocurrency investments and risk management.

Through empirical analysis and the application of advanced financial theories,

we will develop a comprehensive framework for constructing and managing

cryptocurrency portfolios that efficiently balance risk and return.

In order to achieve this objective, this study will be organized into several

sections. First, we will provide a literature review that examines the current state

of knowledge regarding portfolio management and hedging techniques in the

cryptocurrency market, highlighting the gaps in understanding that aim to

address.

Following this, we will employ a multi-step methodology that encompasses a

variety of analysis techniques to evaluate the effectiveness of different hedging

strategies. This methodology will comprise the following steps:

1. Data Collection: The first step in our analysis will involve the collection

of historical data for 12 different cryptocurrencies that make up our

portfolio.

2. Calculation of Weights: In the weight calculation phase, the weight of

each individual cryptocurrency is determined as the ratio of its market

capitalization to the total market capitalization of all cryptocurrencies in

the portfolio.

3. Portfolio Value Modeling: After it, to simulate the potential paths of the

portfolio’s value over the hedging period, we will use a multivariate

Jump-Diffusion model. This stochastic process incorporates both

continuous and discrete jump components to capture the dynamics of

the portfolio assets. It allows for the Monte Carlo simulation of various

scenarios for the price evolution of individual assets in the portfolio,

2



considering factors such as correlation among assets, volatility, drift, as

well as the occurrence of jumps in asset prices. For each simulated path,

we will calculate the expected portfolio value and construct a

distribution of potential future portfolio values.

4. Hedging Exposure Calculation: Based on the expected portfolio value

distribution obtained from the Monte Carlo simulation, the hedging

exposure of the portfolio will be calculated. Hedging exposure refers to

the sensitivity of the portfolio value to changes in the value of an

underlying hedging instrument and to calculate it, we will employ a

multivariate regression approach.

5. Hedging Techniques Simulation: With our portfolio value model, we

will simulate the performance of various options-based and perpetual

swaps (perps) based hedging techniques. This step will involve the

application of both traditional and innovative financial instruments to

manage the identified risks and achieve our desired hedging objectives.

6. Optimal Hedging Strategy Identification: Finally, we will compare the

simulated performance of the different hedging techniques to identify

the optimal strategy that provides the best trade-off between risk

reduction and the cost of hedging. This step will enable us to make

actionable recommendations for investors seeking to optimally hedge

their cash-flow-generated cryptocurrency portfolios.

By employing this rigorous methodology, our study will not only contribute to

the academic literature on cryptocurrency portfolio management but also

provide practical insights and a quantitative framework that can be directly

applied by investors in the real world. Through these findings, I hope to

enhance the understanding of the unique challenges and opportunities
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presented by the digital asset market, ultimately promoting more informed

decision-making and better risk management practice among cryptocurrency

investors.
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Chapter 2

LITERATURE REVIEW

In this section, we review the relevant literature on hedging strategies in

financial markets, with a specific focus on the application of standard futures,

options, and perpetual futures in the context of the cryptocurrency market. The

literature on hedging strategies can be broadly divided into three main

categories, corresponding to the three primary hedging instruments under

consideration.

Standard Futures Contracts have long been recognized as a critical

instrument in traditional financial markets, providing an effective mechanism

for hedging against risks (Bodie, 1989). Such contracts provide investors the

opportunity to secure the future price of an asset, thereby minimizing their

exposure to potential price volatility.

In recent times, futures contracts have grown in popularity (Harris, 2018). This

trend was primarily spurred by the Chicago Mercantile Exchange (CME) with

the introduction of Bitcoin futures in December 2017, followed by Ethereum

futures in February 2021. These advancements have significantly broadened the

scope of financial derivatives, providing investors with novel ways to navigate

the unique risks tied to cryptocurrency investments.

Even with the rising popularity of cryptocurrency futures contracts, empirical

research investigating their efficacy as a risk management tool is still developing.

Initial research, such as that by Billio et al. (2021), offers early empirical

evidence pointing to the potential effectiveness of futures contracts in reducing

risk exposure related to cryptocurrencies.
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Perpetual Futures - perpetual futures, or “perps’ are a relatively new financial

instrument that has risen within the cryptocurrency market (Cont & Kotani,

2020), offering a unique financial tool specifically designed to handle the

market's inherent volatility. With no fixed expiration date, perpetual futures

differentiate themselves from standard futures and are increasingly recognized

as a potentially more effective risk management tool within the fast-paced

crypto market dynamics. This innovative financial instrument has become

popular across various cryptocurrency exchanges, including platforms like

Binance and BitMEX.

The effectiveness of risk mitigation strategies in the cryptocurrency market,

especially those utilizing perpetual futures, has recently garnered academic

interest. Major research efforts have been dedicated to solving the standard

minimum-variance hedging portfolio problem.

In this context, Alexander et al. (2020) emphasize the notable hedge

effectiveness of BitMEX's inverse perpetual futures against cryptocurrency spot

prices. Similarly, Deng et al. (2021) highlight the effectiveness of OKEx's

inverse futures contracts as strong risk management tools for handling spot

price risk. Their research suggests that these contracts surpass CME's standard

futures in terms of hedge effectiveness.

Carol et al. (2021) conducted a comparative study of these financial derivatives

across various trading platforms with the goal of identifying the one that

provides both minimum hedged portfolio variance and the lowest chance of

liquidations due to insufficient collateral. Using the extreme value theorem, they

found an optimal strategy, highlighting that margin constraints and loss aversion

are crucial determinants of its features.

The study by Nimmagadda and Ammanamanchi (2019) examines the

relationship between Inverse Perpetual Swap contracts, a Bitcoin derivative akin
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to futures, and the margin funding interest rates levied on BitMEX. The

research establishes the Heteroskedastic nature of funding rates, meaning that

the variability of the funding rate is not constant but changes over time. This

characteristic of the funding rate is crucial for the development of predictive

models, as it implies that the volatility of the funding rate itself is a random

variable that needs to be modeled.

Options are another common financial instrument used for hedging risk in

traditional markets (Black and Scholes, 1973). Providing the right, but not the

obligation, to buy or sell an asset at a predetermined price on or before a

specified date, allow investors to manage their risk exposure more flexibly.

Recently, cryptocurrency options have gained traction in risk management

(Bakshi et al., 2021). Platforms like Deribit and LedgerX offer options on

various cryptocurrencies, including Bitcoin and Ethereum.

In an examination of hedge performance associated with options, Branger et al.

(2012) employed a range of methodologies including delta, delta-vega, and

minimum variance hedging. They utilized three distinct models for their

investigation: the Black and Scholes (1973) model, the Merton (1976) model,

and the Heston (1993) model. The performance of these models was then

juxtaposed with the Stochastic Volatility with Jumps (SVJ) model, which was

proposed by Bakshi et al. (1997). Their analysis showed that the Black-Scholes

model, in spite of its traditional status, exhibited superior performance in the

context of portfolio delta-hedging when compared to the other models.

However, the model demonstrated suboptimal performance during periods

characterized by extreme market fluctuations, while the Heston model showed

proficiency during 'normal times' but fell short during 'extreme events' marked

by large market movements.
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Sun et al. (2015) conducted a simulation study where the data-generating

process adhered to the double Heston jump-diffusion model. They aimed to

discern the more effective approach between accurately predicting the market

model and utilizing an options hedging model that fits well. Their study

revealed that the hedging performance was insignificantly impacted by a

misestimation of the hedge model, corroborating the findings of Green et al.

(1999). The latter investigated the risk exposure from model risk in the event of

mispricing and inaccurate volatility estimation in forecasting. They found a

material risk exposure stemming from model risk under the assumption that an

option is priced based on the Black-Scholes model. Consequently, they

proposed a 'volatility markup' for call/put options pricing.

El Karouni et al. (1998) also explored hedging under the assumption of

volatility misspecification. They demonstrated that, under certain conditions,

the Black-Scholes option pricing model offers a robust and efficient hedge. The

hedge performance remained robust under claim convexity and accurate

volatility fitting.

In light of these insights, Matic (2019) recommended the application of the

Jump-Diffusion model as a synthetic data-generating process within a stochastic

process framework.

The Jump-Diffusion model, as recommended by Matic (2019) offers a

compelling choice for a synthetic data-generating process in the context of

hedging cryptocurrency portfolios with options. The continuous aspect of the

Jump-Diffusion model, mirroring the traditional GBM model, captures the

continuous, day-to-day fluctuations in the prices of cryptocurrencies. In

conjunction with this, the jump aspect of the model, which introduces an

additional source of randomness, accurately represents the sudden and dramatic

price changes, or “jumps”, often seen in the cryptocurrency market. These
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jumps might be driven by various factors, such as regulatory announcements,

technological changes, or shifts in market sentiment, which often result in

drastic changes in cryptocurrency prices.

Implementing the Jump-Diffusion model for hedging cryptocurrency portfolios

with options can offer several advantages. Firstly, it may provide a more

accurate representation of the actual price dynamics of cryptocurrencies, which

can contribute to improved hedging performance. Secondly, the model’s

flexibility in capturing extreme price movements could potentially lead to more

efficient risk management strategies, as it can help to identify potential hedging

opportunities that might be missed by more traditional models.

Despite these potential advantages, we should also consider the challenges

associated with the use of the Jump-Diffusion model in the context of crypto

assets. These include the complexity of the model, which requires the

estimation of additional parameters compared to more traditional models, and

the lack of historical data on cryptocurrencies, which complicates the model

calibration process. Moreover, the very nature of the cryptocurrency market,

with its extreme volatility and frequent price jumps, might make any model,

even the Jump-Diffusion model, less reliable over longer time horizons.
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Chapter 3

METHODOLOGY

This chapter presents the comprehensive methodology employed in this thesis

to identify the optimal hedging strategies for cash-flow-generating

cryptocurrency portfolios. The research aims to address the question: "How can

investors optimally hedge their cash-flow-generating cryptocurrency portfolios

to minimize risk exposure and maximize returns, while taking into account

market volatility, liquidity, and the unique characteristics of the digital asset

ecosystem, given the positive correlation among the assets and the availability of

hedging instruments for Ethereum?" In order to accomplish this, a multi-step

process is designed.

3.1 Data collection

We collect historical data for 12 different cryptocurrencies that constitute the

portfolio of interest. The data was collected in CSV format and included the

daily closing prices of the cryptocurrencies over a defined historical period.

3.2 Calculation of Weights

The weight of each individual cryptocurrency is calculated as the ratio of its

market capitalization to the total market capitalization of all cryptocurrencies in

the portfolio. The max weight is set to 50% and assigned to the ETH.

𝑤
𝑖

=
𝑀

𝑐

𝑀
𝑡

(1)

where - the weight of the individual asset, - market capitalization of the𝑤
𝑖

𝑀
𝑐

individual asset, - total market capitalization of all cryptocurrencies in the𝑀
𝑡

portfolio.
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3.3 Portfolio Value Modeling

In this step, we will model the portfolio value using a multivariate

Jump-Diffusion model, which is a stochastic process that incorporates both

continuous and discrete jump components to capture portfolio asset dynamics.

This model allows for the simulation of various scenarios for the price

evolution of individual assets in the portfolio, considering factors such as

volatility, drift, and correlation, as well as the occurrence of jumps in asset

prices.

The multivariate Jump-Diffusion model can be represented by the following

equations:

𝑑𝑆
𝑖
(𝑡) = µ

𝑖
𝑆

𝑖
(𝑡)𝑑𝑡 + σ

𝑖
𝑆

𝑖
(𝑡)𝑑𝑊

𝑡
(𝑡) + 𝐽

𝑖
(𝑡)𝑑𝑁

𝑖
(𝑡) (2)

𝑑𝑀(𝑡) = 𝑟𝑀(𝑡)𝑑𝑡 (3)

Here, represents the change in the price of the asset at the time , is𝑑𝑆
𝑖
(𝑡) 𝑖 𝑡 µ

𝑖

the drift (expected return) of asset , is the volatility (standard deviation of𝑖 σ
𝑖

returns) of asset , denotes the differential of a standard Wiener process𝑖 𝑑𝑊
𝑖
(𝑡)

for the asset , is the jump size as a multiple of stock price, while is the𝑖 𝐽 𝑁
𝑖
(𝑡)

the number of jump events that have occurred up to time . is assumed to𝑡 𝑁(𝑡)

follow the Poisson process , where is the average𝑃(𝑁(𝑡) = 𝑘) = (λ𝑡)𝑘

𝑘! 𝑒−λ𝑡 λ

number of jumps per unit of time. Where the jump size follows log-normal

distribution

𝐽~𝑚 · 𝑒𝑥𝑝(− 𝑣2

2 + 𝑣𝑁(0, 1)) (4)
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where is the standard normal distribution, is the average jump size,𝑁(0, 1) 𝑚

and is the volatility of jump size. The three parameters characterize𝑣 λ,  𝑚,  𝑣

the jump-diffusion model.

3.3.1 Parameters Estimation

Then we will estimate the parameters of the multivariate Jump-Diffusion model

using the historical returns of the cryptocurrencies. The returns will be

calculated as the natural logarithm of the ratio of successive daily closing prices.

𝑟
𝑡

= 𝑙𝑛(
𝑃

𝑡

𝑃
𝑡−1

) (5)

where is the return at time , is the price at time , and is the price at𝑟
𝑡

𝑡 𝑃
𝑡

𝑡 𝑃
𝑡−1

time .𝑡 − 1

The drift and volatility will be calculated from these historical returns. Theµ σ

drift will be the mean of the returns, mathematically represented as:

µ = 𝑖=1

𝑁

∑ 𝑅
𝑡

𝑁 (6)

where is the return at time , and is the number of observations.𝑟
𝑡

𝑡 𝑛

The volatility will be the covariance matrix of the returns, calculated as follows:

σ = 𝐶𝑜𝑣(𝑟) (7)

where is the vector of returns, and Cov denotes the covariance operation.𝑟

The jump amplitude will be estimated as the mean of the returns that(𝐽)

exceeds two standard deviations from the mean return.

𝐽 = ∑
𝑟

𝑡

𝑚 ,  𝑓𝑜𝑟 𝑟
𝑡

> µ + 2σ (8)
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where is the return at time , is the mean return, is the standard deviation𝑟
𝑡

𝑡 µ σ

of returns, and is the number of returns that exceed two standard deviations.𝑚

The jump frequency will be set as a fixed parameter, representing the averageλ

number of jumps per day.

3.3.2 Estimation Method

We will estimate the parameters using Maximum Likelihood Estimation (MLE).

The MLE method involves finding the parameter values that maximize the

likelihood function, which measures the probability of observing the data given

the parameters.

ln[𝐿(µ,  σ2)] =− 𝑛
2 ln(2π) − 𝑛

2 ln(σ2) − 1

2σ2 ∑(𝑥
𝑖

− µ)2 (9)

We will maximize the log-likelihood function with respect to and to obtainµ σ2

the MLEs of these parameters.

The estimation of the parameters will be done separately for each

cryptocurrency, assuming independence between cryptocurrencies. The

correlation between cryptocurrencies will be accounted for in the simulation

step by using the covariance matrix of the returns to generate correlated

random time series.

3.3.3 Simulation

To generate possible paths for the cryptocurrency prices over the pre-defined

hedging period (30 days), we will perform a Monte Carlo simulation. The

simulation will be repeated 10000 times to obtain a distribution of possible

portfolio values. Each simulation incorporated random jumps and normal

variations in prices, as dictated by the Jump-Diffusion model.
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For each simulated price path, we will calculate the portfolio value and

construct a distribution of potential future portfolio values. This distribution

will provide insights into the range of possible outcomes including the

likelihood of achieving certain portfolio values and the associated risks. It allows

us to assess the portfolio’s exposure to extreme events and evaluate the

effectiveness of risk management strategies.

𝑉
𝑡+1

=
𝑝=1

12

∑ 𝑤
𝑝
𝑆

𝑝, 𝑡+1
(10)

where is the value of the portfolio at the end of the hedging period ,𝑉
𝑡+1

𝑡 + 1

represents the weight of each individual portfolio asset and is the𝑤
𝑝

𝑆
𝑝,(𝑡+1)

simulated price of the respective asset at that time. The distribution of portfolio

values further will be used for risk management and decision-making purposes,

allowing for an assessment of potential gains or losses within the given time

frame.

3.4 Hedging Exposure Calculation

Based on the expected portfolio value distribution obtained from the Monte

Carlo simulation, the hedging exposure of the portfolio will be calculated.

Hedging exposure refers to the sensitivity of the portfolio value to changes in

the value of an underlying hedging instrument or portfolio.

To calculate the hedging exposure, we will employ a multivariate regression

approach to estimate the portfolio elasticity with respect to the ETH price, a

specific cryptocurrency, and the only asset for which hedging instruments are

presented.

ln(𝑟
𝑝
) = β

0
+ β

1
ln(𝑟

1
) +... + β

𝑖
ln(𝑟

𝑖
) + ε (11)
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where - expected daily returns of the portfolio, - expected daily returns of𝑟
𝑝

𝑟
1

cryptocurrencies, - are the regression coefficients, - represents the errorβ
𝑖

ε

term.

The estimated coefficient in the multivariate regression model represents theβ
1

portfolio price elasticity - sensitivity of the portfolio returns to changes in the

returns of ETH.

The portfolio price elasticity (PE) provides valuable insights into the

responsiveness of the portfolio value to changes in the price of ETH. A higher

elasticity indicates a greeted sensitivity of the portfolio to ETH price

movements, while a lower elasticity implies a lower sensitivity.

Now, based on the estimated portfolio price elasticity with respect to the ETH,

we can calculate the hedging exposure (HE) of the portfolio. HE represents the

change in the portfolio value for a 1% change in the ETH price and can be

calculated using the following formula:

𝐻𝐸 =  ∑ 𝑉
𝑖
(1 + 𝑦

𝑖
) · 𝑃𝐸 · 1% (12)

where - is the hedging exposure of the portfolio, - is the current value of𝐻𝐸 𝑉
𝑖

the individual assets, is the expected yield, and is the estimated portfolio𝑦
𝑖

𝑃𝐸

price elasticity with respect to the ETH price.

The hedging exposure quantifies the potential impact on the portfolio value due

to changes in the ETH price and provides valuable insights for designing

effective hedging strategies to mitigate risks associated with ETH price

fluctuations.
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3.5 Hedging Techniques Simulation

In this step, we simulate the performance of options-based and perps-based

hedging techniques, to evaluate their effectiveness in protecting the portfolio

against adverse price movements. Due to the unavailability of historical options

prices, we will use the theoretical Jump-Diffusion Model for Option Pricing.

This step allows us to identify the optimal hedging strategy that provides the

best trade-off between risk reduction and cost of hedging.

Figure 1. Short perps and Put option payoff diagrams

For this, we will design hedging strategies for each of the considered techniques,

emphasizing short perps and put options. These strategies aim to protect the

portfolio from adverse price movements and limit potential downside risk.

Short perps are a type of derivative that allows the investor to profit from a

decrease in the price of the underlying asset, in our case, Ethereum (ETH). In

such a way, we offset any changes in the total portfolio value that might be a

result of price changes of underlying assets.

The number of shorts needed to fully hedge the portfolio can be calculated by

dividing the hedging exposure by the contract size.
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We will simulate the performance of a hedging strategy that involves opening a

short perps position at the beginning of the hedging period and closing it at the

end of the period. The cost of hedging using short perps will be determined by

the funding rate paid to maintain the position over the hedging period.

Where the funding rate in a perpetual futures contract is related to the

difference between the futures price and the spot price. When the market is

bullish and traders are willing to pay a premium for leverage, the futures price

tends to be higher than the spot price, leading to a positive funding rate.

Conversely, in a bearish market, the futures price might fall below the spot

price, resulting in a negative funding rate. This dynamic suggests that there

might be a relationship between a daily price change and the funding rate.

We will use a linear regression model to quantify this relationship and use it to

forecast future funding rates.

ln(𝑓𝑟) = β
0

+ β
1
ln(𝑟) + ε (13)

where - ETH perpetual futures funding rate, - daily returns of ETH, - is𝑓𝑟 𝑟 β
1

the regression coefficients, - represents the error term.ε

Put options - a strategy that involves acquiring put options that give the holder

the right to sell assets at a predetermined price (the strike price) within a

specified timeframe. By purchasing put options on our portfolio, we create a

form of insurance against potential price declines. The put options will gain

value as the underlying asset prices decrease, offsetting any losses in the

portfolio. The cost of hedging using put options will be calculated as the total

premium paid for the options contracts.

To hedge the portfolio using put options, we will calculate the number of

options contracts needed to fully hedge the portfolio by dividing the hedging

exposure by the contract size.
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Strike selection process: For the sake of simplicity of this thesis, the strike

price is selected equal to the current price of the underlying asset at the time of

the option purchase. This selection strategy is known as at-the-money (ATM)

options trading. By choosing a strike price that equals the current market price,

we’re attempting to balance the cost and potential benefits of the put options.

Put options with strikes set at the current price generally have higher premiums

than out-of-the-money (OTM) options, but lower than in-the-money (ITM)

options. The reason for this is due to the higher probability of the options

expiring in the money, which would trigger a payout. This balance between cost

and potential payout makes ATM options a popular choice for many traders

and investors, especially in volatile markets, like the cryptocurrency market.

Moreover, by choosing an ATM strike, we ensure that our put options start

gaining value as soon as the underlying asset price decreases, without needing

the price to move below a lower strike price first This can provide quicker and

more immediate protection for our portfolio against price declines, making it an

essential part of our risk management strategy.

Options Pricing: to estimate the theoretical put options prices we will use the

Jump-Diffusion model.

In the Jump-Diffusion model, the asset price follows the random process as𝑆
𝑡

described in (2).

For European call-and-put options, closed-form solutions for the price can be

found within the jump-diffusion model in terms of Black-Scholes prices. If we

write as the Black-Scholes price of a call or put option with spot , strike ,𝑃
𝐵𝑆

𝑆 𝐾

volatility , interest rate (assumed constant for simplicity), and the time toσ 𝑟

expiry , then the corresponding price within the jump-diffusion model can be𝑇

be written as
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𝑃
𝐽𝐷

=
𝑘=0

∞

∑ 𝑒𝑥𝑝(−𝑚λ𝑇)(𝑚λ𝑇)𝑘

𝑘! 𝑃
𝐵𝑆

                               (14)

where and . Theσ
𝑘

= σ2 + 𝑘𝑣2/𝑇 𝑟
𝑘

= 𝑟 − λ(𝑚 − 1) + 𝑘 log𝑚
𝑇 𝑘𝑡ℎ

term in this series corresponds to the scenario where jumps occur during the𝑘

life of the option.

The Black-Scholes Formula for Options Pricing:

𝐶 = 𝑆
𝑡
𝑁(𝑑

1
) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑

2
)                          (15)

where:

𝑑
1

=
𝑙𝑛

𝑆
𝑡

𝐾 +(𝑟+
σ

𝑣
2

2 (𝑇−𝑡))

σ
𝑠

𝑇−𝑡
                                   (16)

𝑑
2

= 𝑑
1

− σ
𝑠

𝑇 − 𝑡                                     (17)

here:

C - call option price;

S - current ETH/USDC price;

K - strike price;

r - risk-free interest rate;

t - time to maturity;

N - a normal distribution;

The price of a corresponding put option based on put-call parity with a

discount factor :𝑒−𝑟(𝑇−𝑡)

𝑃 = 𝑁(− 𝑑
2
)𝐾𝑒−𝑟(𝑇−𝑡) − 𝑁(− 𝑑

1
)𝑆

𝑡
                          (18)
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3.6 Optimal Hedging Strategy Identification

Finally, we implement the designed strategies in the simulated paths obtained

from the portfolio modeling step and rank them based on their performance in

terms of the highest expected value minus hedging cost and then choose the

optimal strategy that will provide the most effective protection for the portfolio

against adverse price movements while minimizing the costs associated with

implementing and maintaining the hedge.

For the short perps strategy, the hedging cost is the funding rate paid to

maintain the position over the hedging period. Hedging cost for short perps:

𝐻𝐶
𝑠𝑝

 =  ∑ 𝑓𝑆𝑛                                         (19)

where - funding rate, - position size, - number of days.𝑓 𝑆 𝑛

For the put option strategy, the hedging cost is the total premium paid for𝑃
𝐽𝐷

the options contracts.

By following this systematic approach to identifying the optimal hedging

strategy, we ensure a comprehensive evaluation of the available hedging

techniques, taking into account both qualitative and quantitative aspects. The

resulting optimal strategy will provide a robust and effective means of hedging

the portfolio’s risk exposure while maximizing returns, given the unique

characteristics and challenges of the digital asset ecosystem.
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Chapter 4

DATA

To conduct the analysis and implement the methodology outlined in this thesis,

we rely on a variety of data sources to collect the necessary information.

Table 1. Daily price data for 12 crypto assets

Asset Name Min Standard
deviation

Max

ETH/USDT 518.68 1004.94 4807.98

ADA/USDT 0.14 0.659 2.97

MATIC/USDT 0.02 0.592 2.88

SOL/USDT 1.20 60.39 258.44

DOT/USDT 4.29 12.5 53.82

AVA/USDT 0.48 1.297 6.27

ATOM/USDT 4.40 9.425 44.27

NEAR/USDT 0.87 4.183 20.18

EOS/USDT 0.82 1.915 14.52

EGLD/USDT 8.81 85.12 490.99

XTZ/USDT 0.72 1.77 8.71

The Asset Name column enumerates the 12 cryptocurrencies studied, which are

all paired with Tether (USDT), a stablecoin tied to the value of the US dollar.

The cryptocurrencies include Ethereum (ETH), Cardano (ADA), Polygon
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(MATIC), Solana (SOL), Polkadot (DOT), Avalanche (AVA), Cosmos (ATOM),

Near (NEAR), EOS (EOS), Elrond (EGLD), and Tezos (XTZ). The Minimum

(Min) and Maximum (Max) columns present respectively the lowest and highest

recorded daily price for each cryptocurrency during the observed period. The

Standard Deviation column indicates the level of price volatility for each

cryptocurrency during the period under consideration. This is a measure of how

spread out the prices are from the average price. For example, ETH/USDT has

a standard deviation of X%, indicating the lowest price volatility among all of

the presented portfolio assets.

Table 2. Market Capitalization and Annual Yield.

Asset Name1 Market capitalization,
$B

Annual yield, %

ETH 230 6

ADA 14.09 4

MATIC 10.18 4.8

SOL 9.28 7.15

DOT 7.82 15

AVA 5.91 9

ATOM 3.29 21.39

NEAR 1.93 10.07

EOS 1.33 1.26

MVRSX 1.03 9

XTZ 1.01 5.6

1 Data source: Coingecko https://www.coingecko.com/en
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The Asset Name column lists the ticker symbols of the 12 cryptocurrencies.

The market Capitalization column displays the total market value of each of the

listed cryptocurrencies as of 11.04.2023, in billions of dollars. For instance,

ETH has the highest market capitalization at $230 billion, while Tezos (XTZ)

has the lowest at $1.01 billion. The Annual Yield column is an annual return for

each cryptocurrency as a percentage that is continuously distributed among

token holders who have staked (locked) their tokens over 30 day period.

Here, ATOM offers the highest expected yield at 21.39%, while EOS has the

lowest expected yield at 1.26%.

The final column, Portfolio Weight shows the percentage weight of each

cryptocurrency in our investment portfolio. The portfolio is most heavily

weighted towards ETH at 50%, and least weighted towards Tezos (XTZ) at

0.7%.

Perpetual Futures Funding Rate Data: The funding rate for perpetual futures

contracts is essential to understand the cost of holding these positions as a

hedging instrument.

Table 3. Annualized perpetual futures funding rate, %

Name2 Min Mean Max

Perps annualized funding
rate, %

-333.91 -6.11 10.95

Table 3 provides data on the costs associated with the upkeep of perpetual

futures contracts as a hedging instrument.

2 Data source: Laevitas https://app.laevitas.ch/dashboard
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By collecting and organizing the data from these various sources, we ensure that

the analysis conducted in this thesis is based on accurate and comprehensive

information. This data-driven approach allows us to build a robust

methodology and derive meaningful insights into the optimal hedging strategy

for cryptocurrency portfolios in the context of the digital asset ecosystem.
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Chapter 5

ESTIMATION RESULTS

The estimation results are organized according to the different steps of the

methodology, providing insight into the key aspects of the optimal hedging

strategy for a cryptocurrency portfolio. As an example, we will showcase the

results for one specific hedging period 0.1.03.2023-01.04.2023, demonstrating

the application of the methodology and resulting implications for portfolio risk

management.

After data collection, the first step is to calculate portfolio weights.

Table 4. Portfolio Weights

Asset Name Portfolio weight, %

ETH 50

ADA 9.7

MATIC 7.01

SOL 6.39

DOT 5.38

AVA 4.07

ATOM 2.27

NEAR 1.33

EOS 0.92

MVRSX 0.71

XTZ 0.7
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Figure 2. Portfolio composition

The process begins with the calculation of portfolio weights based on individual

cryptocurrency market capitalizations. This approach ensures that

cryptocurrencies with larger market sizes carry more significant weight in the

portfolio.

For this, we sum up the market caps of all cryptocurrencies and then divide the

individual market cap of each cryptocurrency by this total sum. This results in a

set of weights, each lying between 0 and 1 and summing to 1, representing the

fraction of the total portfolio investment in each cryptocurrency. The largest

weight 50% belongs to ETH - the only portfolio asset for which hedging

instruments are available, while the lowest weight 0.7% belongs to XTZ.

After it, we simulate the portfolio value over the next 30 days. This step

involves two major components: the parameters estimation and the simulation

of portfolio value evolution.
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Figure 3. Correlation Matrix

One of the simulation parameters is the correlation matrix that represents how

different cryptocurrencies in the portfolio move with respect to each other.

This matrix helps us capture the interactions among different assets in the

portfolio.

By using this matrix, we then proceed to simulate the portfolio value over the

next 30 days using a Monte Carlo approach based on a multivariate

Jump-Diffusion model. This model captures both gradual and sudden changes

in cryptocurrency prices. By taking into account asset correlation, it randomly

generates potential future price paths based on the diffusion and jump

parameters derived from historical data.
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Figure 4. Portfolio Value distribution after 30 days.

The result is a distribution of possible portfolio returns after 30 days, allowing

us to understand the potential future performance of the portfolio.

Where the most likely portfolio return is +33%.

The next step is to estimate the hedging exposure. This value provides an

indication of how sensitive the portfolio value is to changes in the price of

ETH, which is used as the underlying hedging instrument.

To estimate this sensitivity, we perform a regression analysis with the most likely

portfolio returns picked from the distribution as the dependent variable and the

individual ETH returns as an independent variable.

The coefficient corresponding to ETH in this regression gives us the elasticity

of the portfolio with respect to ETH price changes. This elasticity is then used

to calculate the hedging exposure, which quantifies the change in portfolio

value for a 1% change in the ETH price.
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Table 5. Portfolio price elasticity estimation results

Coefficients Estimate Std. Error t value

Intercept -0.00103 0.005054 -0.205

log_eth_returns 1.352481 0.215054 6.289 ***

The log_eth_returns coefficient is the sensitivity of the portfolio returns toβ
1

change in the returns of ETH. This is also referred to as the portfolio’s

exposure to ETH. This coefficient is statistically significant. The value of the

coefficient suggests that for every 1% increase in the returns of ETH, we

expect a 1.35% increase in the portfolio value.

The next step involves pricing put options on ETH as one possible method of

hedging the portfolio. We use the Jump-Diffusion option pricing model. The

input for this model is the most likely price path over the next 30 days, derived

previously from the Monte Carlo simulation.

𝑃
𝐽𝐷

= 106. 21$

The output is the estimated price for the put option, which is the cost of

hedging the portfolio’s exposure to ETH using these derivatives.

After it, we focus on the second hedging strategy, which involves the use of

perpetual futures contracts. The cost of maintaining a position in perpetual

futures is determined by the funding rate. We build a linear regression model to

predict this funding rate based on the historical relationship between daily price

changes of ETH and the funding rate.
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Table 6. Funding rate regression estimation results

Coefficients Estimate Std. Error Pr(>|t|)

Intercept -5.505e-05 3.246e-05 0.0929 .

dailyEthReturns 6.115e-04 5.802e-04 0.2944 *

The Intercept represents the funding rate when the daily return is zero. The

p-value associated with the intercept (0.0929) is slightly less than 0.1, indicating

a borderline significance. We’d typically look for a p-value of less than 0.05 to

consider a coefficient statistically significant.

The dailyEthReturns coefficient 6.115e-04 represents the change in the funding

rate for a 1-unit change in the daily return. Its p-value (0.0944) is again

borderline, so we should interpret this result with caution. It suggests that the

funding rate might increase as daily returns increase, but the evidence is not

strong enough to definitely say there is a relationship that requires further

theoretical exploration.

The forecasted funding rate is then used to calculate the cost of hedging with

perpetual futures.

Table 7. Cost of hedging for each strategy for a given hedging period

Strategy Cost of hedging

Put option 7.4%

Perpetual futures 1.33%
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Here, the cost of hedging with put options is 7.4% of the portfolio value, while

the cost of hedging with perpetual futures is considerably lower, at 1.33%.

Put options provide insurance against a potential decline in the value of ETH.

They require an upfront cost, known as a premium, which is 7.4% of the initial

portfolio value in this case. However, it’s important to note that the capital

required for put options is considerably lower compared to that for perpetual

futures. This is because you only need to pay the premium to buy the options

and no additional collateral is necessary.

On the other hand, hedging with perpetual futures requires full collateralization,

which means you need to maintain an amount of capital equal to the portfolio

value. While the cost of hedging seems significantly lower at 1.33%, the full

capital requirement can be a major drawback, as it reduces the capital available

for other investment opportunities, such as reinvesting in the portfolio.

Moreover, in the context of our portfolio where all assets are staked to receive

yield, the opportunity cost of hedging with perpetual futures becomes even

more significant. Staking offers attractive returns in the form of staking rewards.

The capital required for perpetual futures, if not locked up in futures, could be

invested back into the portfolio for staking, potentially earning higher returns.

Therefore, while perpetual futures seem cheaper from a hedging cost

perspective, the high capital requirement and the associated opportunity cost in

terms of forgone staking rewards can make put options a more attractive

hedging strategy in certain scenarios. The choice between the two methods

should consider not only the direct hedging cost but also the capital

requirements, opportunity cost, risk tolerance, market outlook, and potential

rewards from staking.
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Chapter 6

CONCLUSIONS

This thesis aimed to explore the dynamics of optimal portfolio hedging in the

cryptocurrency market, focusing on how investors can optimally hedge their

cryptocurrency portfolios with predictable cash flow to minimize risk exposure

and maximize returns. The study was guided by the research question: “How

can investors optimally hedge their cryptocurrency portfolios while taking into

account the unique characteristics of the digital asset ecosystem?”

The study has demonstrated that derivatives-based hedging instruments,

specifically options-based and perps-based, can be effective in mitigating risks

associated with cryptocurrency investments. The application of these

instruments in the context of a portfolio comprising 12 yield-generating crypto

assets has been investigated, with Ethereum (ETH) playing a particularly

important role due to the availability of hedging instruments for this asset.

The research has employed a multi-step methodology that includes data

collection, calculation of weights, portfolio value modeling, hedging exposure

calculation, and hedging techniques simulation.

The study's findings contribute to the growing body of literature on

cryptocurrency investments and risk management. They provide a

comprehensive framework for constructing and managing cryptocurrency

portfolios that efficiently balance risk and return. This framework can be

directly applied by investors in the real world, enhancing the understanding of

the unique challenges and opportunities presented by the digital asset market.
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In terms of policy recommendations, the study suggests that investors should

consider the use of derivatives-based hedging instruments to manage their risk

exposure in the cryptocurrency market. The choice of hedging instrument

should take into account the unique characteristics of the digital asset

ecosystem, including market volatility, and the positive correlation among assets.

Furthermore, given the crucial role of Ethereum in the portfolio, investors

should pay particular attention to the availability of hedging instruments for this

asset.

For future research, it would be beneficial to explore different data-generating

processes to further validate the robustness of the proposed hedging

framework. Additionally, investigating the prediction of the funding rate and its

impact on the hedging strategy could provide valuable insights into the

cost-effectiveness of the hedging techniques. Finally, the exploration of various

option-based techniques could offer a broader range of hedging strategies for

investors to consider. This could potentially lead to the development of more

sophisticated and effective risk management strategies in the cryptocurrency

market.
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