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CHAPTER 1. INTRODUCTION 

Options are one of the most dangerous financial instruments, one of the hardest to 

understand. For example, to start trading options on the Interactive Brokers, the 

average annual income should be at least $ 40,000 per year, and with experience in 

trading options at least 2 years. On the other hand, there are no such requirements for 

trading stocks on this platform. Since the risks are high, hence the income should be 

substantial as well.  

Since options are complex, many investors have shunned them considering 

them to be sophisticated. Options have existed for about 40 years, but at the very 

beginning, even brokers did not properly understand how to use them correctly. There 

was even less understanding of how to approach the task of option valuation until 

Fisher Black, Myron Scholes and Robert Merton suggested their famous option pricing 

framework (Black and Scholes, 1973; Merton, 1973).  

Now this is the most famous options pricing model. In 1997, Sсholes and 

Merton were awarded the Nobel Prize for the creation of this model. Black did not live 

up to the award for 2 years. The model made several assumptions that were not true in 

the real world. For example, the volatility of the underlying security does not change 

over time. This model pushed financial engineers, economists, and mathematicians to 

study and improve it. 

Heston (1993) extended the Black-Scholes-Merton model by assuming that the 

underlying asset’s volatility is stochastic: the volatility dynamics is described via a 

separate stochastic differential equation. Adding Poisson jumps to the stochastic 

volatility model, it is assumed that this model will work better for unexpected price 

jumps, for example, reactions to unexpected events, news. Within the stochastic 
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volatility model, plain vanilla options can be priced with a semi-closed-form valuation 

formula. This model has also been well studied and has been applied to various 

financial markets. We will show this later. This paper demonstrates the application of 

the Heston model to the Polish options market.  

Why exactly the Polish market? Market participants use European type options. 

Many papers explore already established markets, such as the USA (Bates (1996), 

Bakshi, Cao, Chen (1997)) and evaluate models that are better suited to this market. In 

such markets, it was shown that the Black Scholes formula works worse than a 

stochastic volatility model or a stochastic volatility with Poisson jumps model. 

However, emerging markets cannot boast of such. Kokoszcynski, et al. (2010) studied 

the Polish market with high-frequency data for WIG20 index options. They evaluated 3 

models (Black-Scholes-Merton variations) applying for futures contract where WIG20 

index futures was the basis instrument, and it was determined that one of this model 

the best. Based on the previous paper, Kokoszczynski, Sakowski, Slepczuk (2017) 

defined that for the Japanese market (Nikkei 225 index options) the same model was 

the best among the other 5 models which included the Heston model. 

We hypothesize that for developed markets, such as the US market, a stochastic 

volatility model (with or without jumps) works better than the Black-Scholes model. 

However, for developing markets a simpler model might be a better fit because there is 

less variability in the data, fewer valid contracts, low liquidity. It is also questionable that 

the developed Japanese market was taken by Kokoszczynski et al. (2017) to test the 

hypothesis of Kokoszcynski et al. (2010). We decided to continue studying the Polish 

market and checking what model is better among the BSM model, the Heston model, 

and the Heston model with jumps on daily frequency call options data. For investors in 

Eastern Europe, the Polish market is considered to be the most developed one, and we 

believe that these studies in options valuation will be useful for investors in emerging 

markets.  
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Since the market is emerging,  this article also demonstrates data cleansing and 

preparing data for models with different contract volume. It also shows how stable the 

algorithms are. Estimation of model parameters on daily data shows the limits of our 

model parameters, their adequacy. All computations were done in Python programming 

language using Quantlib library for model evaluation, Scipy library for numerical 

method optimization and BeautifulSoup library for scrapping data.   
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CHAPTER 2. LITERATURE REVIEW 

The first to make revolutionary research in the world of option models were Black, 

Scholes, and Merton. Black and Scholes in the “Pricing of Options and Corporate 

Liabilities” (1973) presented a mathematical interpretation of the option price and 

derived a formula. The model itself relied on several important assumptions that do not 

work in the real world. 

Assumptions: 

1. The option is European type 

2. Markets are efficient (lack of arbitrage, market movement cannot be predicted) 

3. Dividends are not paid. It is assumed that the shares do not pay either dividends or 

profits 

4. Stock returns are normally distributed. The volatility doesn’t vary with time 

5. Interest rates are constant, which makes the underlying asset risk free 

6. No transaction costs. 

Merton (1973) interpreted mathematical terms into a more understandable 

language for investors and coined the term “Black – Scholes option pricing model”.  

It was later shown by Bates (2003) that some theoretical assumptions are not 

assumed in real data. But still, the formula is often used in comparison with other 

models in practice.  

Kokoszczyński, et ca. (2010) studied the variation of the Black-Scholes model. 

They estimated price for WIG20 index option using Black models for WIG20 index 
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futures contract due to WIG20 index option and future contracts are expired on the 

same date. In this paper investigated 3 variations of Black model which differ in their 

volatility assessment:  

Black realized volatility (BRV) – standard deviation of the returns (log returns) 

of the underlying asset with assuming mean zero.  

Black implied volatility (BIV) – using implied volatility such as volatility that 

needs to be entered as a parameter of the option pricing model (in this case, the only 

one) to get the current option price. 

Black historical volatility (BHV) – standard deviation of returns (log returns). 

All three models were used for high-frequency data. This paper also describes 

the metric by which models are compared. As showed Bams (2009) even the best 

metric for comparison is a controversial issue. They decided to use the well-known 

BSM model for futures pricing (BHV model). The Black formula has a lot of common 

with Black–Scholes formula for stock options except that using discounted futures 

price instead of the spot price of the underlying. In this paper BRV model using 

different frequencies 10 seconds, 1 minute, 5 minutes, and 15 minutes. However, have 

been averaged only for 5 minutes and daily observations, where n = 1, 2, 3, 5, 10, 21. 

As a result, were studied the BRV model with an interval of 5 minutes and 6 BRV 

models with an interval of 5 minutes and an parameter of averaging n (1, 2, 3, 5, 10, 

21).  

So, there are models which were compared: 

1. BRV with 10 seconds, BRV with 5 minutes, BRV with 5 minutes and 

parameter of averaging 5, BRV with 5 minutes and parameter of averaging 21, BHV, 

and BIV – for selecting the best model, 
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2. BRV with 5 minutes, BRV with 5 minutes and n different parameters of

averaging (n = 1, 2, 3, 5, 10, 21) – for selection the best model. 

Applying models to high-frequency data (10-seconds) for WIG20 index option, 

it was revealed that the best model is BIV. A little worse was BHV, and much worse 

BRV. Moreover, for different concepts of BRV models, results significantly differ. 

The Black-Scholes model has the assumption that stock returns are normally 

distributed with known variance and mean. Also, there is no mean spot return in 

option-pricing equation; consequently, it cannot be summarized by allowing the mean 

to vary. But the assumption with volatility is dubious. Scott (1987), Hull and White 

(1987), and Wiggins (1987) added stochastic volatility to the Black-Scholes model. 

Melino and Turnbull (1990, 1991) determined that this approach quite good estimates 

the price of currency options. But all these papers have the disadvantage that to solve 

two-dimensional partial differential equations it is necessary to use numerical methods, 

it means there is no closed-form solution. Jarrow and Eisenberg (1991) and Stein (1991) 

investigated the model which assumes that volatility does not correlate with the spot 

asset. They used an average of Black-Scholes formula values over different paths of 

volatility. However, since the volatility does not correlate with spot returns, this 

approach cannot include important skewness effects that arise from such correlation. 

Heston (1993) introduced a stochastic volatility model (Heston model) that is not based 

on the BS formula and used it to derive a closed-form solution for the price of the 

European call option.  

Kokoszczyński, Sakowski and Ślepaczuk (2017) investigated high-frequency 

data (5-minutes) for the Japanese Nikkei 225 index options. The motivation for this 

paper came from the paper by Kokoszczyński, et al. (2010). The authors explore 6 

models: the Black model with different types of volatility processes (realized volatility 

with and without smoothing, historical volatility and implied volatility), the stochastic 

volatility model, and the GARCH (1, 1) model. The metrics by which quality was 
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evaluated were Median absolute percentage error (MdAPE) 𝑀𝑑𝐴𝑃𝐸 =

𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑦𝑖−𝑦𝑚𝑜𝑑𝑒𝑙

𝑦𝑖
) , 𝑖 = 1, . . , 𝑁 and Overprediction (OP) 𝑃 =

 ∑ 𝑂𝑃𝑖
𝑁
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝑂𝑃𝑖 = 1 𝑖𝑓 𝑦𝑚𝑜𝑑𝑒𝑙 > 𝑦𝑖 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, based on differences

between theoretical and real options prices. 

Options usually divide into three types ITM, ATM and OTM options. ITM call 

options mean that the current price of the underlying asset is more than the strike price. 

ATM call options mean that the current price of the underlying asset is identical to the 

strike price. OTM call options mean that the current price of the underlying asset is less 

than the strike price. ATM is more attractive for investors if they expect movement of 

the underlying asset. Contracts also can be of different duration. It calls Time to 

maturity (TTM) and means number of days to expiration of a contract.  

A MdAPE metric indicated that the Black model with the implied volatility 

estimator (BIV) has the smallest average pricing errors for the majority of option 

classes. The Heston model produced slightly higher errors, but, on the other hand, was 

the best model for ATM options with TTM less than 60 days. The remaining models 

showed worse results. According to the OP metrics, the best model was BIV and the 

second best was Heston model. For put options, the results were similar for both 

metrics. Thus, this article confirms the result that the best model is BIV. 

Very often, real data is faced with unpredictable leaps, which can talk about any 

news, failures. Merton (1976) introduces the Black Scholes model with Poisson jumps. 

Poisson jumps are responsible for unexpected information, for example, news. Nicola 

Gugole (2016) compared the Merton model and Black Scholes model by fitting log-

return and volatility smile on S&P500. Merton's model turned out to be better. 

Bates(1996) combined Heston model and Merton model and obtained stochastic 

volatility model with Poisson jumps. Bates (1996), Bakshi, Cao, Chen (1997) showed 

that it works better than Heston model on developed market. 
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This article enables to identify how well the models perform on daily data for 

WIG20 index options. Unlike previous articles, we do not use data on futures contracts, 

for an underlying asset we use WIG20 index. It also demonstrates a data cleaning 

method for models by choosing the valid number of purchased contracts Volume per 

each day. The purpose of this article is to choose the best model among the three 

others Black-Scholes model, Heston and Heston with jumps model for daily, low-

frequency data. From previous articles, it can be confirmed that Black-Scholes model 

works better than Heston and Heston with jumps.   
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CHAPTER 3. METHODOLOGY 

As was said Black-Scholes formula is the beginning of research in the option pricing 

model. It can be deduced from Geometric Brownian Motion (GBM) equation: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 , 

𝑊𝑡 , 𝑡 ≥ 0 − Brownian motion 

𝑆𝑡 = 𝑆(0)𝑒
(𝜇−

𝜎2

2 )𝑡+𝜎𝑊𝑡

All derivation explained in Fisher Black, Myron Scholes (1973). 

The final formula for call option is: 

𝑐 =  𝑆𝑡𝑁(𝑑1) − 𝐾𝑒−𝑟𝑡𝑁(𝑑2)

𝑤ℎ𝑒𝑟𝑒:  𝑑1 =
𝑙𝑛

𝑆𝑡
𝐾 + (𝑟𝑓 +

𝜎2

2 )𝑡

𝜎√𝑡

𝑑2 = 𝑑1 − 𝜎√𝑡 

𝑐 −call option price, 𝑆 – underlying price, 𝐾 – price, 𝑟𝑓 −risk-free interest rate, 𝑡 – time 

to maturity, 𝑁 – normal distribution 

In the Black-Scholes formula, the only unobservable variable is 𝜎, which is the 

volatility of future stock returns. To estimate 𝜎, a GARCH model for past stock returns 

or past option prices can be used (in the later case, the resulting volatility is called 

implied volatility).  
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To extract implied volatility from observed option prices, a numerical 

procedure should be used, since the Black-Scholes option pricing formula is highly 

nonlinear (though monotone) in parameter 𝜎. The Newton-Raphson is frequently used 

in the literature for this purpose. As Kokoszcynski et al. (2017) show, a model with 

implied volatility works better than a model based on GARCH or historical volatility. 

So we use this approach for daily frequency data with estimating implied volatility and 

predict the next day.  

Heston model (1993) is not based on Black-Scholes formula and it assumes that 

the dynamics of underlying asset price 𝑆𝑡 and its volatility 𝑉𝑡 are given by the following 

set of differential equations: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝑆𝑡√𝑉𝑡𝑑𝑊𝑡
1

𝑑𝑉𝑡 = 𝑘(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎√𝑉𝑡𝑑𝑊𝑡
2

𝑑𝑊𝑡
1𝑑𝑊𝑡

2 = 𝜌𝑑𝑡

Additionally, it is assumed that 𝑉𝑡 , 𝑡 ≥ 0, is a mean-reverting process, with long 

memory expected value 𝜃 and mean-reverting coefficient 𝑘. There are five unknown 

parameters: mean reversion 𝑘, long-run variance 𝜃, current variance 𝑉𝑡, correlation 𝜌, 

and volatility of volatility 𝜎. Additionally, if 2𝑘𝜃 > 𝜎2, the volatility motion is always

above zero, which could ensure the volatility to be positive (see Cox et al. (1985)).  

There is also analytical solution of Heston model which provided in Yiran Cui, 

Sebastian del Bano Rollin, Guido Germano (2016). 
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Defined by 𝐶∗(𝐾𝑖 , 𝑇𝑖) the market price of a call option with a strike 𝐾𝑖 and

maturity 𝑇𝑖 , 𝐶(𝜃, 𝐾𝑖 , 𝑇𝑖) the price computed via the Heston (1993) analytical formula 

with unobserved parameter vector 𝜃 = [𝑉, 𝜎, 𝜌, 𝑘, 𝜃]𝑇. Defined the residuals for n

options: 

𝑟𝑖(𝜃) = 𝐶(𝜃, 𝐾𝑖 , 𝑇𝑖) − 𝐶∗(𝐾𝑖 , 𝑇𝑖), 𝑖 = 1, … , 𝑛 

Vector of residuals 𝑟(𝜃) = [𝑟1(𝜃), 𝑟2(𝜃), … , 𝑟𝑛(𝜃)]𝑇 , 𝑟(𝜃) ∈ 𝑅𝑛

There was used for market price 𝐶∗(𝐾𝑖 , 𝑇𝑖) =  
𝐴𝑠𝑘𝑝𝑟𝑖𝑐𝑒+𝐵𝑖𝑑𝑝𝑟𝑖𝑐𝑒

2

Calibration of the Heston model is an inverse problem in the nonlinear least-

squares form: 

min
𝜃 ∈ 𝑅𝑛

𝑓(𝜃)                                                                 (1) 

In our case 𝑚 = 5 and 𝑓(𝜃) =
1

2
𝑟(𝜃)𝑇𝑟(𝜃).

Since we have more than 5 observations within each data subsample, 

the calibration problem is overdetermined. Solution problem (1) see in Yiran Cui, 

Sebastian del Bano Rollin, Guido Germano (2016). Heston model is also very popular 

since there is a closed-form solution for the price of European type call options.  

𝐶(𝑆𝑡 , 𝑉𝑡 , 𝑡, 𝑇) = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟𝑓(𝑇−𝑡)𝑃2, 𝑤ℎ𝑒𝑟𝑒

𝑃𝑗(𝑥, 𝑉𝑡 , 𝑇, 𝐾) =
1

2
+

1

𝜋
∫ 𝑅𝑒 {

𝑒𝑖𝜙 ln(𝐾)𝑓𝑗(𝑥, 𝑉𝑡 , 𝑇, 𝜙)

𝑖𝜑
} 𝑑𝜙

∞

0
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𝑓𝑗(𝑥, 𝑉𝑡 , 𝑇, 𝜙) = exp {𝑟𝜙𝑖𝑟𝜑 +
𝑎

𝜎2
[(𝑏𝑗 − 𝜌𝜎𝜙𝑖)𝜏 − 2 𝑙𝑛 (

1 − 𝑔𝑒𝑑𝑟𝑓

1 − 𝑔
)]

+
𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑

𝜎2
(

1 − 𝑒𝑑𝑟𝑓

1 − 𝑔𝑒𝑑𝑟𝑓
) + 𝑖𝜙 𝑙𝑛(𝑆𝑡)}

𝑔 =
𝑏𝑗 − 𝜌𝜎𝜙𝑖 + 𝑑

𝑏𝑗 − 𝜌𝜎𝜙𝑖 − 𝑑

𝑑 = √(𝜌𝜎𝜙𝑖 − 𝑏𝑗)2 − 𝜎2(2𝑢𝑗𝜙𝑖 − 𝜙2)

𝑢1 =
1

2
, 𝑢2 = −

1

2
, 𝑎 = 𝑘𝜃, 𝑏1 = 𝑘 + 𝜆 − 𝜌𝜎, 𝑏2 = 𝑘 + 𝜆 

After determining the parameters of the Heston model the formula above can 

be used to find the theoretical price of the call options.  

Merton (1976) proposed a jump-diffusion for the stock price model. The stock 

price process is divided into two parts: “normal vibrations”, modeled by a standard 

Brownian motion, and “abnormal vibrations”, resulting from firm-specific factors or 

new information, modeled by a jump process. Bates(2002) combined Heston and 

Merton models. 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝑆𝑡√𝑉𝑡𝑑𝑊𝑡 + 𝑆𝑡𝑑 (∑(𝑌𝑖 − 1)

𝑁(𝑡)

𝑖=1

) 

𝑑𝑉𝑡 = 𝑘(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎√𝑉𝑡𝑑𝑊𝑡
2

𝑑𝑊𝑡
1𝑑𝑊𝑡

2 = 𝜌𝑑𝑡



Where N(t) is a Poisson process with parameter 𝜆 and {𝑌𝑖 , 𝑌𝑖 > 0} which is a 

sequence of independent identically distributed (i.i.d.) random variables (sequence of 

jump size). If we assume 𝜆 = 0 and 𝑉 = 𝑐𝑜𝑛𝑠𝑡, then the stock price returns have the 

same dynamics as those in the BSM approaches. If 𝑉 = 𝑐𝑜𝑛𝑠𝑡 and 𝜆 ≠ 0 as in the BS 

model case, we can get a closed-form solution for the Merton model. In particular, we 

have 

𝑆𝑡 = 𝑆0 exp {𝜎𝑊𝑡 + (𝜇 −
1

2
𝜎2) 𝑡} ∏ 𝑌𝑖

𝑁𝑡

𝑖=1

, 0 ≤ 𝑡 ≤ 𝑇 , 

where 𝑉𝑖 = log 𝑌𝑖 ~𝑁(𝜂, 𝛿). 

So we have 3 diffusion parameters 𝜆, 𝜂, 𝛿. And also we have an unknown five 

parameters. Totally: 8 parameters to estimate. 

To estimate these parameters: 

𝜃 = [𝑉, 𝜎, 𝜌, 𝑘, 𝜃, 𝜆, 𝜂, 𝛿]𝑇 = argmin
𝜃∈Θ

∑(Σ𝑖 − Σ𝑖
′(𝜃))

2
𝑁

𝑖=1

, (2)

Where Σ𝑖 =  Σ(𝐾𝑖 , 𝑇𝑖 , 𝐶𝑖) 𝑎𝑛𝑑 Σ𝑖
′(𝜃) = Σ(𝐾𝑖 , 𝑇𝑖 , 𝐶(𝜃)), 𝐾 −

𝑠𝑡𝑟𝑖𝑘𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛 𝑖, 𝑇𝑖 − 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑜𝑓 𝑜𝑝𝑡𝑖𝑜𝑛 𝑖, 𝐶𝑖 − 𝑜𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒, 𝐶(𝜃) −

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑛𝑔 𝑜𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒. 

For market option price was used average between bid and ask prices. Solution 

problem (2) with the Multinomial Maximum Likelihood approach is described in

Gugole (2016). 

Using Python libraries Quantlib for building models and Scipy for numerical 

optimization methods was found solutions to these problems. The algorithm employed 
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for determining the parameters of the models was tested in the following way. Using 

random inputs with different strike prices and Heston model values, IV and Call option 

prices were estimated. After that calibration method with initial values of Heston model 

was used to define the final parameters of Heston model and compared the results with 

input values of this model. The conclusion made from such experience was that if the 

initial values are close to the true values, then the fitted values will also be close to the 

true values. Otherwise, the algorithm is likely to reach a non-optimal value.   

There are many different metrics to measure the quality of models. For 

example, the percentage of overprediction, median absolute percentage error, root 

mean square error. Since we do not have a lot of daily data and after clearing them even 

less, thus to measure a quality Average relative percentage error were used: 

𝐴𝑅𝑃𝐸 =
1

𝑛
∑

|𝐶𝑡𝑟𝑢𝑒 − 𝐶𝑒𝑠𝑡|

𝐶𝑡𝑟𝑢𝑒

𝑛

𝑘=1
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CHAPTER 4. DATA 

We are scrapping the following option data from stooq.com using BeautifulSoup library 

in Python: Ask, Bid, TTM, Premium, Volume(number of contracts purchased), Symbol, 

Strike, Spot price, IV, Historical volatility (Volatility). By this time, we have daily data 

on options from 19-05-2020 to 24-07-2020. In total, we got 32 business days. After 

that, the data are prepared and ready to be used in models. The following restrictions 

are imposed via the query: Volume more than 2, Bid, and Ask is not equal to zero. 

After that was investigated the ratio between ask and bid prices.  

Figure 1. The ratio of ask and bid prices for each option 

 

Figure 1. shows that there are options with ask price higher than bid price more 

than 400 times. These options are invalid for evaluating. To choose the optimal ratio at 

which the option will be considered valid, options were cleaned from outliers in the 

context of options with different TTM. After that was an investigated number of 

contracts per each day. Outliers were meant options which are higher than 

𝑞3 + (𝑞3 − 𝑞1) ∗ 1.5, 𝑤ℎ𝑒𝑟𝑒 𝑞1 − 𝑓𝑖𝑟𝑠𝑡 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒, 𝑞3 − 𝑡ℎ𝑖𝑟𝑑 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒   
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Table 1. Descriptive statistics of call options, in PLN 

 Ask Bid IV Volume, units 

Mean 69.34 53.20 0.26 25.39 

Median 32.28 17.22 0.25 5.00 

Std 89.68 82.50 0.07 72.35 

Min  0.10 0.01 0.00 1.00 

Max 724.25 694.25 1.03 845.00 

25% 8.51 3.50 0.23 2.00 

75% 98.80 69.30 0.28 18.00 

 

As can be seen from the quantiles, the options market volume is low.  Also, we 

have two options with zeros IV and it means that there were no changes in price. 

Figure 2. Number of contracts per each day 

 

10 option contracts for each day were selected as the threshold number. As a 

result, 22 days were obtained for estimating the parameters of the models. 
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Figure 3. WIG20 index dynamics 

  

This chart shows the spot price by day on which the models were built. It is 

evident that the spot prices are following an upward trend in May and stabilized in the 

next two months. Suppose this is due to the stabilization of the situation with the 

COVID19. Since the situation with the COVID19 after the lockdown began to 

improve, the government began to soften the conditions for staying in public places, 

and accordingly, some enterprises resumed work. The economic situation began to 

improve.  

Table 2. Number of contracts by Maturity and Moneyness 

Maturity ( in days ) 

 
Moneyness(K/S) 

7-30 30-50 50-120 120-333 

 

0.81-0.95 14 1 1 7 

0.95-1.0 34 3 13 7 

1.0-1.05 55 15 16 10 

1.05-1.1 42 10 22 11 

1.1-1.47 12 3 28 23 
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Table 3. Average prices by Maturity and Moneyness 

Maturity ( in days ) 

 
Moneyness(K/S) 

7-30 30-50 50-120 120-333 

 

0.81-0.95 182.55 121.70 198.65 244.84 

0.95-1.0 67.95 108.07 109.59 167.36 

1.0-1.05 21.92 34.52 54.20 100.82 

1.05-1.1 5.42 11.81 31.38 86.85 

1.1-1.47 2.44 3 14.85 22.19 

 

Table 4. Average IV by Maturity and Moneyness 

 

 
Tables 3-4 represent the average prices of ITM, OTM, and ATM options which 

are increasing with a higher duration of an option contract. Moreover, for each group 

of maturity, it is evident that the IV is decreasing to some level in line with increasing 

Moneyness and then the reversal of its direction follows. This effect is called a volatility 

smile and raises concerns against the assumption of constant volatility in the BSM 

model. 

 

 

 

Maturity( in days ) 

 
Moneyness(K/S) 

7-30 30-50 50-120 120-333 

 

0.81-0.95 0.28 0.22 0.27 0.31 

0.95-1.0 0.25 0.21 0.25 0.29 

1.0-1.05 0.23 0.21 0.23 0.25 

1.05-1.1 0.24 0.21 0.22 0.26 

1.1-1.47 0.27 0.26 0.23 0.24 
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Figure 4. IV-Moneyness. Volatility smile 

 

The figure above shows a nice volatility smile for the groups with TTM 7-30 

and 120-333 days. The volatility smile shows higher volatility for OTM and ITM 

options than ATM options. Thus, the Black-Scholes model assumptions that volatility 

is constant over time and underlying asset returns have log-normal distributions are 

incorrect in the real world. The volatility smile was first inscribed after the stock market 

crash in 1987. That day was called Black Monday and was described by Tim 

Metz(2003).  

Figure 5. IV-Moneyness 
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Figure 5 represents that for group with TTM 50-120 days we have downward 

trend and for group with TTM 30-50 we have almost volatility smile. 

Wibor 3-Month interest rate which is the reference rate for interbank unsecured 

borrowing is employed as a risk-free rate. 
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CHAPTER 5. RESULTS 

5.1. Tests of Fit and Parameter Estimates 

Was reviewed the data from 19-05-2020 to 24-07-2020 and after the cleaning data was 

obtained 22 days. The first model that was investigated is the Heston model. Using the 

input data `Expiration Dates`,` Strike prices`, `IV for Call options`,` risk-free rate`, 

`dividend rate`, `Spot prices`, initial value. To measure the quality of the models, the 

metric Average relative percentage error was selected.  

The Nonlinear least-squares method was used to solve the Market Implied 

Volatility Estimate problem. After converting the data into classes, a result was 

obtained for each of the twenty-two days. Initial values for the parameters were the 

next : 

 [𝜃, 𝑘, 𝜎, 𝜌, 𝑉] = [0.2, 0.2, 0.5, 0.1, 0.02] 

Table 5. Descriptive statistics of the Heston model estimated parameters 

 𝜃 𝑘 𝜎 𝜌 𝑉 
Mean 11.08 12913.59 1268.11 -0.26 8.82 

Median 0.09 18.30 7.58 -0.36 0.08 

Std 30.60 26475.52 2425.86 0.36 26.35 

Min  0.00 0.00 0.0 -0.71 -4.44 

Max 122.10 90106.56 8253.36 0.87 111.40 

25% 0.06 0.13 0.52 -0.48 0.05 

75% 0.22 5389.72 1507.12 -0.12 1.16 

 

We see that parameter estimates have a huge standard deviation. It follows that 

the daily data are too different from each other either the programmed model is highly 
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sensitive to minor changes. The quality and comparison of models are shown in Figures 

3 and 4. 

The next model in which parameters were evaluated is the Heston with Poisson 

Jumps (Bates model). The input remains the same, except for initial values. 

[𝜃, 𝑘, 𝜎, 𝜌, 𝑉, 𝜂, 𝛿, 𝜆] = [0.02,0.2,0.5,0.1,0.01, 0.1, 0.1, 0.2] 

For this model, were faced with the problem of the estimated parameter going 

out of bounds. For example, the estimated parameter  |𝜌| > 1, 𝜎 < 0, 𝑉 < 0. In such 

cases, the value was rounded to the nearest possible. 

Table 6. Descriptive statistics of the Heston with jumps model estimated parameters 

 𝜃 𝑘 𝜎 𝜌 𝑉 𝜂 𝛿 𝜆 
Mean 0.17 50.62 2.86 -0.47 0.08 -0.42 0.26 0.81 

Median 0.08 1.19 0.45 -0.90 0.08 0.13 0.01 0.27 

Std 0.27 197.12 10.04 0.72 0.00 2.18 0.84 1.06 

Min  0.01 0.14 0.00 -1.00 0.08 -9.38 0.00 0.10 

Max 0.08 862.60 44.26 1.00 0.08 0.24 3.72 3.68 

25% 0.03 0.84 0.02 -1.00 0.08 -0.01 0.00 0.20 

75% 0.15 2.58 1.23 0.10 0.08 0.18 0.13 0.83 

 

Based on descriptive statistics (Table 6), it can be seen that the same parameters 

of the kappa, sigma model has less standard deviation than in the Heston model. Also, 

parameter V is constant for all days. 

The last model that was investigated was the BSM model. The initial values are 

not needed for this model in Quantlib library.  
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Figure 6. Model errors for each day, % 

 

It can be seen that in most cases (19/22 cases) the BSM model outperforms the 

Heston model and Heston model with jumps. The Heston model with jumps in most 

cases works similarly to the Heston model. The Heston with jumps model stands out 

from the rest at one point (first of July). 

 Table 7. Average error, %  

 BSM Heston Heston with jumps 

Average Error, % 15 24 25 

 

5.2. Tests of Fit and Parameter Estimates for Volume more than 6 

Contracts with a volume of more than six were investigated to decrease the difference 

between ask and bid prices and to increase the number of ATM, ITM contracts. Was 

investigated 11 days. 
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Figure 7. Model errors for each day with Volume > 6, % 

 

 

It can be seen that the general situation has not changed. BSM model still has 

fewer errors in 10/11 cases. 

Table 8. Average error for Volume > 6 (contracts), %  

 BSM Heston Heston with jumps 

Average Error, % 20 31 37 

 

All three models, on average, for data with Volume > 6 showed a higher error 

than for the data with Volume > 2. 

5.3. Comparing days with the highest error and the smallest error. 

After comparing the days in which the Heton model had the smallest error and the 

largest error, the conclusion was drawn: 
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1. The average between ask and bid prices has a higher correlation with implied 

volatility(0.82) for the day with the smallest error than for day with the highest 

error (0.12).  

2.  Less number of options for the day with the smallest error. 

3. The high percentage of short term options (80%) for the day with the smallest 

error.  

 

 

 

  



 

 

26 

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

Options are non-linear financial instruments based on the underlying asset. Options 

enable the buyer of the option to buy or sell, depending on the type of the option 

contract. The holder of the option undertakes to execute the transaction. Unlike futures 

contracts, options contracts enable the holder the opportunity to buy or sell an asset. 

Call options provide an opportunity to buy for a specific price within a specified time 

frame. Put options provide the ability to sell at a specified price at a specified time. This 

article covered the WIG20 index call options. Options are considered the most difficult 

financial instruments. This is because it is difficult to estimate the fair price of these 

contracts. There are a huge number of models for estimating prices. In this paper, three 

models were examined: BSM model, Heston model, Heston with Poisson jumps model 

(Bates model). BSM model is one of the first model that estimated fair price of option 

contracts. BSM model is based on several assumptions one of that is the volatility of 

the underlying asset is constant over time. BSM model has only one unknown 

parameter. Heston model or stochastic volatility model is the model where underlying 

asset price and volatility follows stochastic differential equations. Hence this model 

solved the problem with constant volatility. There are already five unknown parameters. 

Adding the Poisson jumps to Heston model we make this model more complex 

moreover, these jumps are responsible for unexpected news, and number of uknown 

parameters is already eight.  

The application of these models to the Polish options market is due to the fact 

the Polish market is considered one of the largest in Eastern Europe; moreover, the 

most recent study of models for assessing the fair price of options was in 2010. In 

comparison with paper Kokoszcynski et al. (2010), other models for evaluating call 

options that were applied to daily data were demonstrated in this paper. Moreover, 

Kokoszcynski et al. (2010) evaluated 3 models (Black-Scholes-Merton variations) and 

applying them to the futures contract where WIG20 index futures was a basis 
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instrument. Based on the previous paper, Kokoszczynski, Sakowski, Slepczuk (2017) 

defined that for the Japanese market (Nikkei 225 index options) the same model was 

the best among the other 5 models which included the Heston model. The daily data of 

call options were obtained using the BeautifulSoup scraping library from the website 

stooq.com. Since the Polish market is a developing market, data cleaning was needed. 

Namely in this work, the method of data cleaning using the proportion of Bid and Ask 

prices and applying 3σ approach for filtering outliers are demonstrated. For the risk-

free rate was chosen Wibor 3 months. The minimum number of options per day was 

selected 10. Heston model and Heston model with Poisson jumps per each day more 

often gave higher error than BSM model. Options with a higher volume of purchased 

contracts (7 and higher) were also investigated. Heston and Heston with Poisson jumps 

models were again worse than Black-Scholes model. But it was also noticed that, on 

average, all three models showed a higher error than on all data (with a contract volume 

of 3 and higher). The numerical methods that were used to evaluate the parameters of 

the Heston model and Heston with Poisson jumps model will be investigated more 

thoroughly because some parameters in some cases seemed unlikely. To evaluate 

models, the Quantlib library was chosen, for numerical optimization methods Scipy, 

which used Nonlinear least-squares. It was found that the Heston and Heston with 

jumps models are very sensitive to the choice of the initial parameters vector. It was 

also investigated on test data created manually with parameters for the Heston model 

and then applying the parameter calibration algorithm.  

There are a lot of figures in this article that describe the data. Including the plot 

of Implied Volatility - Moneyness. Moneyness is the ratio of the strike price to the spot 

price. The figure 4 shows a nice volatility smile for the groups with TTM 7-30 and 120-

333 days. And it means higher volatility for OTM and ITM options than ATM options. 

And this again confirms the fact that the assumptions in the Black Scholes model that 

volatility is constant over time and underlying asset returns have log-normal 

distributions are incorrect. 
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There was also a comparison of the data with the largest error and the data with 

the smallest error. The day with the smallest error has a higher correlation between 

average ask, bid prices and implied volatility for call options, a fewer number of 

options(in 2 times), higher percent of short term options (80%, 22 days to maturity). 

This paper will be of interest to investors and brokers for the proper pricing of 

options. This study gives an understanding of what stage the options market is in 

Poland, demonstrates the use of models that work well in a developed market (USA). It 

is also worth noting that pricing options using the BSM model were often better than 

the Heston model and Heston with Poisson jumps model. For developed countries, the 

opposite is true. Heston model and Heston with jumps model are very sensitive for the 

initial value of parameters and also are highly nonlinear. Since the Polish market is a 

developing market thus the number of valid options after data cleaning per each day is 

small. And the complex model for this such of the market works worse than the Black-

Scholes model for the majority of days.  

For further work, there are still multiple things to focus on:  

1. First of all, it is crucial to investigate the stability of the solution of the 

Heston model equation and how to decrease sensitivity to initial values of 

parameters. Because depending on the different initial conditions, the 

evaluation of some parameters is very different from each other. Also to 

confirm or reject the hypothesis that Black models work better than the 

Heston model for an emerging market, models should be tested on data 

from a similar options market (e.g. Hungary).  

2. Secondly, it would be interesting to evaluate the put options and compare 

the results. In this article, only daily data are used and the parameters are 

evaluated daily. It would also be interesting to do parameter estimation on 

weekly data and using others numerical optimization methods. For 
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numerical optimization methods was used nonlinear least-squares method. 

There are many other optimization techniques, such as differential 

evolution for finding the global minimum.  

3. At last, it might be of interest to an average agent who has no access to the 

risk-free rate borrowing or faces significant transaction costs to have the 

models estimated using somewhat relaxed assumptions. 
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APPENDIX 

Figure 7. Ask  and Bid prices for options Volume > 2,  % 

 
 

 

 
Figure 8. Wibor 3 month interest rate, % 
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