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Abstract 

FORECASTING GOVERNMENT 
BOND YIELD CURVE USING 
DYNAMIC NELSON-SIEGEL 

MODEL 

by Mykola Shyshov 

Thesis Supervisor: Professor Olesia Verchenko 
   

Despite the presence of the variety of models that are used for yield curve 

forecasting, the application of the model that could be suitable for forecasting 

yield curve in Ukraine remains an open question. In this study, we investigate the 

forecasting performance of the Dynamic Nelson-Siegel (DNS) model by 

following the approach developed by Diebold and Li (2006). Our research 

showed that DNS is not superior to the random walk model in the context of 

long-term forecasting for the case of Ukraine. At the same time, the forecasting 

performance for shorter future horizons is revealed to be more promising. The 

findings also suggest that yield-curve factors are more potent in their effects on 

macroeconomic fundamentals than the effect of macroeconomic indicators on 

the future dynamics of yield-curve factors. This result provides a better 

characterization of the dynamic interactions between the macroeconomy and 

yield curve for policymakers when it comes to policy-related decisions. 
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C h a p t e r  1  

INTRODUCTION 

A yield curve that plots interest rates of bonds at different maturities plays an 

essential role for policymakers, investors, and other financial market participants. 

Being a transmitter of monetary policy (monetary policy instruments affect the 

entire term structure, which in turn determines the financing conditions of the 

economy), the yield curve is perceived to be a valuable source of information 

about future expectations. Despite numerous attempts to build accurate models 

that can be used in practice to forecast future movements of yield curves, there 

is no universal solution that can meet the wide variety of yield curve modeling 

demands. While macroeconomists try to build yield curve models for interest rate 

forecasting, the majority of investors are interested in bond pricing and use term 

structure modeling to assess risks and adjust portfolios at times of expected 

volatility or slowdown in the economy. This paper attempts to contribute to the 

existing literature by providing empirical evidence of the forecasting ability of the 

Dynamic Nelson-Siegel (DNS) model in the context of the term structure of 

interest rates in Ukraine. Moreover, the inclusion of macroeconomic factors 

provides a further step in the investigation of the possible interactions between 

the yield-curve factors and macroeconomic fundamentals in Ukraine. 

There is abundant literature devoted to yield curve modeling. While Vasicek 

(1977), Cox et al. (1985), Hull and White (1990) are renowned for their 

contribution to the development of term-structure equilibrium models that focus 

on dynamic forecasting, Ho and Lee (1986) and Heath et al. (1992) were among 

the pioneers of no-arbitrage modeling that is revealed to be more accurate in 

determining cross-sectional properties of the term structure of interest rates. 

Since most of the models that were developed in the past century contain some 
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limitations, more recent academic literature shifted in the direction of their 

resolution.  

In this paper, we will apply the methodology developed by Nelson and Siegel 

(1987) and extended by Diebold and Li (2006). The rationale behind the choice 

of the model comes from the fact that the Dynamic Nelson-Siegel model, 

popularized by Diebold and Li (2006), combines the features of both no-arbitrage 

and equilibrium models, and, by using yields as inputs for the parametric curve 

equation, is capable of delivering more accurate out-of-sample forecasting results. 

The purpose of this study is to assess the forecasting ability of the Dynamic 

Nelson-Siegel model and to investigate interactions of yields, real economic 

activity, and monetary policy in Ukraine. The questions of interest can be stated 

as follows: is forecasting performance of the Dynamic Nelson–Siegel model 

superior to the random walk model for both short-term and long-term horizons, 

and what are the links between yield-curve factors and macroeconomic 

fundamentals for the case of Ukraine? 

The hypotheses that will be tested in this paper are: Dynamic Nelson-Siegel 

model has better forecasting ability as opposed to random walk; and there is 

bidirectional causality between yield-curve factors and macroeconomic 

fundamentals in Ukraine. 

The data on discounted zero-coupon yields were retrieved from Bloomberg to 

estimate the parameters of the Nelson-Siegel model. The data about external 

macro-factors such as industrial production, target policy rates, and consumer 

price index changes were retrieved from the official website of the National Bank 

of Ukraine. 
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As for the implications of the research, the results can be of great importance for 

policymakers who can use the dynamic approach while setting up 

macroeconomic targets and policies. The results of the investigation of the 

macro-yields model may also provide a better characterization of the dynamic 

interactions between the macroeconomy and the yield curve, which can help 

policymakers to navigate policy-related decisions more effectively. At the same 

time, the forecasting approach evaluated in this study may be used as a powerful 

tool by investors and bond analysts to forecast yield curve movements with a 

high degree of precision. 

The paper is organized as follows. In Chapter 2, a review of related literature is 

provided covering the evolution and recent evidence of term structure modeling 

and forecasting. Chapter 3 outlines the empirical methodology employed. In 

Chapter 4, a detailed description of the data utilized is provided. Chapter 5 sheds 

light on the estimation results. Chapter 6 contains conclusions, implications, and 

suggestions for future research. 
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C h a p t e r  2  

LITERATURE REVIEW 

The idea of forecasting government bond yield curve is not a new one in the 

academic literature. Many scholars investigated the fitting performance of yield 

curves built based on the estimation of different models with various factors 

under analysis. 

This literature review is divided into the following sections: (i) approaches to term 

structure modeling; (ii) Dynamic Nelson-Siegel model; (iii) macro-factor 

augmented Dynamic Nelson-Siegel model. 

 

2.1. Approaches to Term Structure Modeling 

In the second half of the last century, two approaches to term-structure modeling 

prevailed among academics and practitioners. Following no-arbitrage modeling 

of the yields, the term structure of interest rates is fitted at a particular point in 

time to eliminate arbitrage opportunities that may arise from the mispricing of 

assets caused by the changes in interest rates, which arbitrageurs can use to 

exercise abnormal profits (Diebold and Li 2006). The equilibrium approach to 

yields modeling involves using the so-called affine term-structure models, which 

assume that future dynamics of the term structure of interest rates is determined 

by some gradual developments in observed or unobserved factor (state variable) 

(Bolder 2001). Following the equilibrium approach, one models the pattern of 

dynamics for some instantaneous interest rate, which then can be used to derive 

yields at different maturities (Duffie and Kan 1995; Diebold and Li 2006). While 

no-arbitrage models are beneficial from the point of view of pricing derivatives 
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and tend to be more accurate in determining cross-sectional properties of the 

term structure of interest rates, equilibrium models bring to the fore time-series 

properties and are evidenced to be more suitable when it comes to describing 

term-structure dynamics over specific periods. 

The no-arbitrage approach was pioneered by Ho and Lee (1986), who used a 

binomial tree setting to model the arbitrage-free movement of the discounted 

bond yield curve (Hull and White 1993). The model developed by Ho and Lee 

(1986) was further extended by Heath et al. (1992), who proposed a new 

methodology to value interest rate sensitive contingent claims. In particular, the 

authors applied an arbitrage-free pricing model with a stochastic rate process to 

model the term structure of bonds and other contingent claims. The scholars 

were among the first to address the issue associated with inversion of the term 

structure and its relation to the market price of risk. 

Vasicek (1977) was among the first who started to develop term-structure 

equilibrium models. Using a set of assumptions about spot interest rates and 

efficiency of the market, as well as an arbitrage argument about the expected rate 

of return on bonds, the scholar managed to derive an analytical solution to the 

bond pricing formula. The model proposed by Vasicek (1977) was of great 

significance among academics since it enabled to capture the mean-reverting 

process of short-term interest rates, a characteristic that is revealed to be 

distinctive for interest rates as financial prices. 

In another study, Cox et al. (1985) provided an extension to the model designed 

by Vasicek (1977) by using an equilibrium intertemporal asset pricing framework 

to derive bond prices and track the relationship between expected future spot 

and past spot rates. The authors incorporated anticipations, the timing of 
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consumption preferences, risk aversion, and investment alternatives as factors 

affecting the term structure of bond prices. 

Hull and White (1990) extended both the model designed by Vasicek (1977) and 

the one proposed by Cox et al. (1985). In their study, Hull and White (1990) 

attempted to deduce the process followed by the short-term interest rates in the 

previous models from the term structure of interest rates and volatilities. A 

pattern derived by the scholars illustrated how one could use either Vasicek 

(1977) or Cox et al. (1985) models to value not only bonds but also any other 

interest-rate contingent claims. 

Though equilibrium modeling is commonly used for forecasting purposes as 

opposed to no-arbitrage models that mainly focus on fitting performance of yield 

curves, these models are also subject to limitations that often result in poor 

forecasting performance. For example, in his study on term premia and interest 

rate forecasts, Duffee (2002) revealed that one of the failures of affine models in 

producing better forecasts than random walks was the dependence of risk 

compensation on the interest rate volatility. Inherent linearity and poor cross-

sectional properties of equilibrium models are also among the features that limit 

their use as the tools for term structure forecasting (Bolder 2001). 

The model that I will focus on in this paper is developed by Diebold and Li (2006) 

who went beyond no-arbitrage and equilibrium models and used the Nelson-

Siegel framework to forecast the yield curve by forecasting the factors of the 

curve. 
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2.2. Dynamic Nelson–Siegel Model 

Nelson and Siegel (1987) developed a simple, parsimonious model that was 

capable of capturing critical features of yield-maturity relations and had valuable 

practical applications for both academics and practitioners. In the paper, the 

authors used the yield-maturities equation to impose structure on factors that 

define the shape of the curve. Using the data on T-Bonds from the Federal 

Reserve Bank of New York for the period between 1981 and 1983, Nelson and 

Siegel (1987) managed to show that their parsimonious representation was 

accurate enough in characterizing the shape of the term structure of the yield 

curve. The study conducted by Nelson and Siegel (1987) showed that modeled 

fitted curves were good predictors of the long-term United States T-bonds prices. 

Since its introduction, the model designed by Nelson and Siegel (1987) has 

become widely used among scholars and financial market participants. Different 

variations of the model also appeared extending and modifying the standard 

model.  

The core paper that this thesis will follow is by Diebold and Li (2006). In their 

study, Diebold and Li (2006) provided a dynamic extension of the framework 

developed by Nelson and Siegel (1987) by focusing on the out-of-sample 

forecasting of yields. The scholars used Fama–Bliss unsmoothed yields as inputs 

for their parametric curve equation to assess the fit of the three-factor model 

(Diebold and Li 2006). The authors also estimated autoregressive models for 

three dynamically evolving time-varying parameters, namely level, slope, and 

curvature of the yield curve to forecast the term structure of government bond 

yields. Compared to standard benchmarks, the empirical results of Diebold and 

Li (2006) are revealed to be more accurate (especially for long-term horizons), 

which points to the good fitting performance of the forecasted yield curve. 
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2.3. Macro-Factor Augmented Dynamic Nelson–Siegel Model 

During the past decade, many scholars attempted to evaluate the links between 

the latent factors of the DNS model (level, slope, and curvature) and 

macroeconomic fundamentals such as inflation, benchmark interest rates, and 

real economic activity. As a result, a separate class of DNS models, known as 

macro-factor augmented Dynamic Nelson–Siegel models, started to gain 

popularity among academia. 

One of such extensions of the original DNS framework can be found in the paper 

by Diebold, Rudebusch, and Aruoba (2006). The authors used the data on the 

U.S. Treasury yields and statistics on manufacturing capacity utilization, the 

federal funds rate, and annual price inflation to assess the presence of 

bidirectional causality between macro factors and yield factors such as level, 

slope, and curvature. The estimation results showed that the impact of 

macroeconomic fundamentals on yield-curve factors is more pronounced 

compared to the shocks coming from the yield factors. The analysis of impulse 

response functions illustrated the presence of a strong and persistent (positive) 

relationship between the slope factor and the identified macro variables (Diebold, 

Rudebusch, and Aruoba 2006). Moreover, the scholars found that an increase in 

inflation tends to raise the long end of the yield curve (level factor), which is also 

consistent with the expectations about long-term inflation levels (Diebold, 

Rudebusch, and Aruoba 2006). 

In the study devoted to the analysis of the United Kingdom's monetary policy 

interaction with the real economy, Levant and Ma (2015) used the end of the 

month zero-coupon government yields data that spanned the period between 

January 1985 and December 2006 to investigate interactions between the term 

structure of interest rates and external macroeconomic factors such as industrial 
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production, policy target rate, and inflation expectations. The scholars found that 

the yield curve's level and slope were related to inflation expectations and 

monetary policy, whereas the curvature factor was found to be more strongly 

related to economic activity in the UK. In another study, Nyholm (2015) 

suggested using a Rotated Dynamic Nelson-Siegel (RDNS) model to track the 

interaction of macro-financial factors with the term structure of interest rates. 

The author found that a new parametrization of the Dynamic Nelson-Siegel 

model that term premia generated by the model are economically meaningful, 

and macroeconomic variables are statistically significant but only for a certain 

period. 

This thesis will contribute to the existing literature by providing empirical 

evidence of the forecasting ability of the DNS model in the context of Ukrainian 

government bond yield curve. Moreover, the inclusion of macro variables will 

enable to evaluate possible interactions between the term structure of interest 

rates and macroeconomic fundamentals in Ukraine. 



 

 10 

C h a p t e r  3  

METHODOLOGY 

3.1. A Factor Model Representation 

Diebold and Li (2006) factorization of the DNS yield curve model (a state-space 

framework) is a methodology that is commonly used by scholars to estimate the 

latent DNS yield curve factors (level, slope, and curvature) and all model 

parameters including the loading parameter λ (the exponential decay rate). The 

equation below represents the cross-section of yields at any point in time (yt) and 

different maturities (τ) with time-varying parameters as interpreted by Diebold 

and Li (2006): 

 

𝑦!(𝜏) = 𝛽"! + 𝛽#! (
#$%!"#

&'
) + 𝛽(! (

#$%!"#

&'
	− 	𝑒$&'),         (1) 

 

where 𝛽"!	, 𝛽#!	, 𝛽(! are time-varying level (long-term factor), slope (short-term 

factor), and curvature (medium-term factor). The parameter λt defines the 

exponential decay rate and also indicates the point at which the curvature factor 

(𝛽() reaches its maximum value. As indicated by the authors, small values of the 

parameter govern the slow pace of decay (thus fit the curve better at longer 

maturities), whereas large values produce fast decay (fit the curve better at shorter 

maturities) (Diebold and Li 2006). 

Following the standard approach developed by Nelson and Siegel (1987), the 

parameters of the model for each period t can be estimated using ordinary least 
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squares model, which is a convenient and relatively simple way of estimating 

parameters of the yield curve compared to nonlinear optimizations. In the 

context of the Nelson-Siegel model, however, the parameter of exponential decay 

λ should be fixed at the level at which the curvature factor reaches its maximum. 

In our model, λ equals to 0.0609. After applying standard OLS procedure to the 

raw yields, one can obtain a time-series of estimates of the parameters and a set 

of residuals, the values of which are indicative of the fitting performance of the 

model. 

 

3.2. Yield Curve Modeling and Forecasting 

In this paper, a series of univariate AR (1) processes is applied to model and 

forecast yield-curve factors both in-sample and out-of-sample. The following is 

the AR (1) specification that is used to forecast yields: 

 

𝑦.!)*/!(𝜏) = 𝛽/",!)*/! + 𝛽/#,!)*/! (
#$%!"#

&'
) + 𝛽/(,!)*/! (

#$%!"#

&'
− 𝑒$&'),     (2) 

 

where 𝛽/#,!)*/! = �̂�- + 𝑦.-𝛽/-!, i = 1,2,3, ℎ is period forecast of the yield with 

maturity 𝜏 at time t, and and �̂�- and 𝑦.- are obtained by regressing 𝛽/-! on an 

intercept and 𝛽/-,!$* (Diebold and Li 2006). 

Following Diebold, Rudebusch, and Aruoba (2006), VAR (1) model is also an 

appropriate devise to capture the dynamic behavior of the yield curve factors. If 

the dynamic movements of 𝛽"! , 𝛽#! , 𝛽(! follow a vector autoregressive process of 
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first order, then the model forms a state-space system, which has the following 

form: 

 

3
𝛽"! − 𝜇.$
𝛽#! − 𝜇.%
𝛽(! − 𝜇.&

5= 6
𝑎## 𝑎#( 𝑎#/
𝑎(# 𝑎(( 𝑎(/
𝑎/# 𝑎/( 𝑎//

83
𝛽"!$# − 𝜇.$
𝛽#!$# − 𝜇.%
𝛽(!$# − 𝜇.&

5+6
𝜂!𝛽"
𝜂!𝛽#
𝜂!𝛽(

8,          (3) 

 

t=1,…., T. The measurement equation that links yields and yield-curve factors is 

as following: 

 

:

𝑦!(𝜏#)
𝑦!(𝜏()
…

𝑦!(𝜏0)

<= 

⎝

⎜
⎜
⎛1
1
…
1

					#$%
!"#%

&'%

					#$%
!"#&

&'&…
					#$%

!"#'

&''

					#$%
!"#%

&'%
− 𝑒$&'%

					#$%
!"#%

&'%
− 𝑒$&'&

…
					#$%

!"#%

&'%
	− 𝑒$&''⎠

⎟
⎟
⎞
6
𝛽"
𝛽#
𝛽(
8+:

𝜀!(𝜏#)
𝜀!(𝜏()
…

𝜀!(𝜏0)

<,       (4) 

 

which can be equivalently written in matrix form as  

 

(𝑓! − 𝜇) = 𝐴(𝑓!$# − 𝜇) + 𝜂!,                   (5) 

𝑦! = Δ𝑓! − 𝜀!.                                (6) 
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In the context of optimization procedure, Diebold and Li (2006) require that the 

white noise transition and measurement disturbances to be orthogonal with 

respect to each other and to the initial state: 

 

(
𝜂!
𝜀!)~𝑊𝑁 K(

0
0) , (

𝑄 0
0 𝐻)O                    (7) 

E(𝑓"𝜂!1) = 0,                            (8) 

E(𝑓"𝜀!1) = 0.                            (9) 

 

Furthermore, the approach applied by Diebold and Li (2006) requires some 

additional assumptions formulated with respect to the Q and H matrices. In 

particular, it is assumed that covariance matrix Q is non-diagonal (state equation 

factor disturbances 𝜂! are correlated), and covariance matrix H is diagonal 

(deviations of observed yields at various maturities are uncorrelated). 

Though multivariate VAR (1) specification is considered to be inferior to the AR 

in the context of forecasting performance due to the potential for in-sample 

overfitting (Diebold and Li 2006), in this paper, the former is applied for two 

purposes. First, the VAR (1) specification is used to forecast yields in order to 

compare forecasting results with the ones generated by the AR (1) model. Second, 

following the methodology utilized by Diebold, Rudebusch, and Aruoba (2006), 

we use VAR (1) specification in the context of investigating the interactions 

between the factors of the Nelson-Siegel model and external macroeconomic 

factors. 
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The forecasting approach consists of the following steps. First, in-sample 

forecasting is performed by estimating the AR (1) models using an expanding 

window starting with 32 months. The predictions are made for 19 months for all 

maturities, as specified in Chapter 4. As in the case of in-sample forecasting, out-

of-sample forecasting also includes an expanding window. This means that the 

process is started with a window of a certain size (window size R=32 months, as 

the in-sample data, ending at month t (starting at t-R+1)), and one goes step by 

step over time including an additional data point every time. The number of 

increments between successive rolling windows is 1 period, which means that the 

first rolling window includes observations for period 1 through R, the second 

one contains data for period 2 through R + 1, and so on.  

For comparison, along with the AR(1) model, the VAR(1) and RW models are 

computed on the same subset of data. Since the models are based on parameters, 

the latter are forecasted for each time horizon (1,6,12). The rates in which we are 

interested at this stage are not all the maturities, but only some of them (those 

that are reflected in Chapter 5). Once parameters are forecasted, as per Diebold 

and Li (2006), one may translate them in forecasts of the rates following equation 

(1). 

Further, the computations of the errors made are performed. Since there is one 

set of rates per horizon, at every time step one obtains a matrix of errors of the 

shape n x m, where n indicates horizons and m denotes the rates. The values of 

root mean-square-error (RMSE) are examined to assess the out-of-sample 

forecasting performance of the model. The formula for RMSE is as following: 
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𝑅𝑀𝑆𝐸234%5(𝜏) = 	T
#

6$!$
∑ (𝑦.!(𝜏) − 𝑦!(𝜏))(6
!7!$  ,              (10) 

 

where 𝑦.!(𝜏) are the yields forecasted by the model, and 𝑦!(𝜏) are the observed 

yields. The interval [𝑡", 𝑇] is indicative of the time horizons for which we make 

forecasts. 

As a benchmark model, similar to the original paper, random walk model is used 

to give a base standard on predictive accuracy for each model (Diebold and Li 

2006). The following is the equation for the standard random walk model: 

 

𝑦.!)*/!(𝜏)	=	𝑦!(𝜏),			 	 	 	 	 				 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (11) 

	

where 𝑦.!)*/!(𝜏) is the forecast of the yield, and ℎ is the horizon of the forecast. 

 

3.3. The Yields-Macro Model Specification 

Since both the Nelson-Siegel latent factors and macro-factors are present in a 

VAR framework, it provides the opportunity to conduct impulse response 

analysis of interactions between the factors of the Nelson-Siegel model and 

external macroeconomic factors such as the target policy rate (IR), industrial 

production (IKSO), and annual inflation rate (CPI). The inclusion of 

macroeconomic variables in the model requires an extension of the yields-only 

model with equations (5-7) being replaced with the following ones: 
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(𝑓! − 𝜇) = 𝐴(𝑓!$# − 𝜇) + 𝜂!,                     (5’) 

𝑦! = Δ𝑓! − 𝜀!,                                 (6’) 

(
𝜂!
𝜀!)~𝑊𝑁 K(

0
0) , (

𝑄 0
0 𝐻)O,                      (7’) 

 

where 𝑓!1 = (𝛽"! , 𝛽#! , 𝛽(!, 𝐶𝑃𝐼! , 𝐼𝑅! , 𝐼𝐾𝑆𝑂!). It is worth noting that the inclusion 

of three macroeconomic variables to the state variables increases the dimensions 

of A, 𝜇, 𝜂! and Q. In particular, D is now of the dimension N x 6 with the three 

rightmost columns containing zero values. Such a form ensures that the loading 

of the yields is carried out on the yield curve factors only, not macroeconomic 

variables (Diebold and Li 2006). 

When it comes to assessing the dynamics of the yields-macro system, impulse 

response functions with 95 percent confidence intervals are used. To evaluate the 

links between macroeconomic variables and yield factors, and vice versa, four 

groups of impulse responses are taken into account, namely macro responses to 

yield curve shocks (and macro responses to macro shocks), and yield curve 

responses to macro shocks (and respective yield curve responses to yield curve 

shocks). As a metric for analyzing yield curve and macro interactions, variance 

decompositions for both the yields-only and the yields-macro models are 

provided at different forecast horizons. 
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C h a p t e r  4  

DATA DESCRIPTION 

4.1 Yield-Only Model 

To estimate the macro-factor augmented Dynamic Nelson-Siegel model, the 

monthly data on zero-coupon yields were retrieved from the Bloomberg for the 

period between Jan. 2015 and Nov. 2019. The zero-coupon yield curves of 

domestic sovereign bonds of Ukraine in UAH are illustrated in Figure 1. The 

continuously compounded spot yields are calculated by the National Bank of 

Ukraine using the Nelson-Siegel parametric model based on data on transactions 

with domestic sovereign bonds of Ukraine on the stock exchange and OTC 

markets of Ukraine over the last five business days. The National Bank of 

Ukraine uses these zero-coupon yield curves to estimate the fair value of 

Ukraine's domestic sovereign bonds.  

The maturities under investigation are the 3, 6, 9, 12, 24, 36, 48, 60, 84, 96, and 

120-month. Though it is not a strict requirement of the model to have fixed 

maturities, Diebold and Li (2006) suggest the latter would significantly simplify 

the forecasting process. From the graph, one can observe that the yields are 

smoothed as opposed to the raw data, and a large degree of temporal variation in 

the curve's level is present as we go from the beginning of the sample period. 
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Figure 1. Zero-coupon yield curves of domestic sovereign bonds of Ukraine in 
UAH for different maturities (the sample period is 2015:08 – 2019:11, months) 

 

The descriptive statistics for the monthly yields at different maturities are 

presented in Table 1. From the table, one can observe that the typical yield curve 

is downward sloping as we move from shorter maturities to longer ones. Also, it 

is worth noticing that the rates with longer maturities are less volatile than those 

with shorter maturities. 
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Table 1. Descriptive statistics for monthly yields at different maturities (the 
sample period is 2015:08 – 2019:11) 

Maturity 
(months) 

Mean Std. dev. Minimum Maximum 

3 16.00 2.29 10.58 19.99 
6 16.15 2.18 10.37 20.39 
12 16.22 1.96 10.00 20.10 
24 15.79 1.56 9.55 17.99 
36 14.99 1.28 9.37 17.04 
48 14.09 1.09 9.34 16.20 
60 13.20 0.93 9.37 15.09 
72 12.36 0.77 9.40 13.92 
84 11.61 0.63 9.40 12.97 
96 10.94 0.52 9.37 12.09 
120 9.83 0.46 9.02 10.72 

 

Since the yields that we use as inputs in our model are derived from the 

parameters of the Nelson-Siegel model estimated by the National Bank of 

Ukraine, one could have used the parameters that are reported by the NBU as 

inputs for forecasting. However, to ensure the validity of the model used and the 

assumptions that accompanied the process of estimating the parameters of the 

Nelson-Siegel model, we reproduced the parameters using package YieldCurve 

in R software. Rates and maturities were used as arguments to estimate 

coefficients of the Nelson-Siegel model. In such a way, reproducing the 

parameters helped in 'double-checking' the quality of inputs. 

In Figure 2, we plot observed yield curve constructed using the parameters 

estimated by the NBU and fitted yield curve built based on the parameters 

estimated by our model in R software for some selected date. One can observe 

that our curve is concurrent with the one constructed using the parameters 

estimated by the NBU. The residual plot depicted in Figure 3 also indicates a 

good fit of the reproduced estimators. 
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Figure 2. Selected fitted (model-based) yield curve 

 

 
Figure 3. Yield curve residuals from Nelson–Siegel yield curves fitted month-by-
month (2015:08 – 2019:11) 
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Descriptive statistics for the estimated factors are presented in Table 2. The 

values of the mean, standard deviation, minimum and maximum, as well as the 

autocorrelation for estimated parameters (factors) of the model at displacements 

of 1 and 12 months are reported in Table 2. The data from the autocorrelations 

of the three factors confirm the stylized fact, as noted by Diebold and Li (2006) 

about stronger persistence of level factor (𝛽") compared to slope and curvature 

factors (𝛽# and 𝛽(	respectively). However, one can also observe that such 

persistence tends to fade away as the number of months increases (already at a 

displacement of 12 months in our case). 

 

Table 2. Descriptive statistics, estimated factors (percentage-based data) 

Parameter Mean 
Std. 
Dev. Min Max MAE RMSE ρ(1) ρ(12) 

β0 4.899 1.618 2.418 7.405 2.213 5.151 0.763 -0.063 
β1 10.350 1.197 8.138 12.354 3.217 10.416 0.673 -0.329 
β2 17.988 2.148 13.674 20.957 4.241 18.112 0.629 -0.373 

 

 

4.2 Macroeconomic Variables 
 

As for the macro-factor augmented Nelson-Siegel model, the data on production, 

monetary policy-related interest rate, as well as changes in consumer price index 

(CPI), are used as the macro risk factors that are typically found in the related 

literature (Diebold and Li (2006); Levant and Ma 2016; Nyholm 2015). Data on the 

three macro-factors come from the NBU database, and their descriptive statistics 

are reported in Table 3. 
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Table 3. Descriptive statistics for macroeconomic variables (the sample period is 
2015:08 – 2019:11) 

Variable Mean Std. dev. Minimum Maximum 
IR 16.86 3.15 12.50 27.00 

CPI 15.71 12.23 5.10 52.80 
IKSO 2.21 4.40 -8.09 17.95 

 

The Index of  Key Sectors Output (IKSO) was used as a proxy for the industrial 

production variable. The IKSO is the index of  economic activity (calculated by 

the NBU) that covers activities such as agriculture, industrial production 

(mining, processing, the supply of  electricity, gas, etc.), construction, trade 

turnover (wholesale and retail) and transport. Following the methodology of  

the NBU, the IKSO is a good GDP predictor, given that it covers more than 

50% of  the economy. The graphical representation of  the changes in IKSO 

over the analyzed period is showed in Figure 4. 

 

 

Figure 4. IKSO, to corresponding month of the previous year, % (the sample 
period is 2015:08 – 2019:11, months) 
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The second macro variable that is incorporated in our model is Consumer Price 

Index (CPI), which is the 12-month percent change in the prices paid by 

consumers for a market basket of  consumer goods and services. As for the 

policy rate, the target interest rate set by the NBU is used as another 

macroeconomic variable. 

  

 

Figure 5. Consumer price index (to corresponding month of the previous year, 
%) (the sample period is 2015:08 – 2019:11, months) 

 

 

Figure 6. Target interest rate dynamics, % (the sample period is 2015:08 – 
2019:11, months) 
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C h a p t e r  5  

RESULTS 

5.1 In-Sample Forecasting Performance 

The results that are present below include the estimation of the Dynamic Nelson-

Siegel model using zero-coupon yields at different maturities (the sample period 

is 2015:08 – 2019:11). All the estimations were performed using R software with 

the YieldCurve library being the one that is used to model and estimate the 

yield curves. These results include the estimation of factor loadings of the model, 

in-sample and out-of-sample forecasting, as well as yields-macro interactions. 

Figure 7 shows the computed autocorrelations of parameters and residuals after 

estimating the AR (1). The AR (1) models were estimated using an expanding 

window starting with 32 months (which accounts for around 60% of the data 

sample). The predictions are made for 19 months for all maturities. The estimates 

of the beta coefficients show highly persistent own dynamics with own-lag 

coefficients of 0.77, 0.68, and 0.63 for 𝛽"! , 𝛽#! , 𝛽$! respectively. From the graphs, 

it can be inferred that the model in-sample performs well since the 

autocorrelations are relatively small. When compared to the results of the core 

paper by Diebold and Li (2006), it can be seen that the autocorrelation plots are 

aligned, which also points to the well in-sample fit. 
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Figure 7. Autocorrelations and residual autocorrelations of level, slope and 
curvature factors. 

 

5.2 Out-of-Sample Forecasting Performance 

As for the out-of-sample forecasting, it was carried out using AR (1), VAR (1), 

and random walk models for three different forecast horizons h: 1, 6, and 12 

months. It is also worth mentioning that the curve fitting and forecasting of the 

yields are performed using R software. 

Tables 4–6 present the root mean square errors (RMSE) of the 1-, 6-, and 12-

month forecasts. The bold values in the tables indicate the smallest RMSE in the 
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context of the alternative models. From the tables, RMSE comparison at various 

maturities reveals the results that contradict the outcomes found by Diebold and 

Li (2006). In particular, RMSE calculated for random walk model tend to be 

smaller as we increase our forecasting horizon. Notably, at the rates with longer 

maturities, random walk appears to be the best model for yield curve forecasting. 

Matters improve, however, in our case, when we consider shorter forecasting 

horizons such as 1-month-ahead forecasting reported in Table 4. In the table, 

RMSEs for VAR (1) model are smaller compared to the random walk model, 

though only for the rates with maturities up to 36 months. 

 

Table 4. Out-of-sample 1-month-ahead forecasting results (N = 19 individual 
forecasts) 

Model Name Maturity 
(𝜏) Mean Std. 

Dev. RMSE 𝜌(1) 𝜌(12) 

Nelson–Siegel with AR(1) 
factor dynamics 

3 -0.123 0.917 0.901 0.661 -0.356 
6 -0.009 0.930 0.905 0.770 -0.408 
12 -0.171 0.934 0.925 0.729 -0.391 
36 -2.246 0.708 2.349 0.225 -0.020 
60 -3.396 0.851 3.496 0.570 -0.120 
120 -3.159 1.017 3.311 0.740 -0.216 

       
Nelson–Siegel with 
VAR(1) factor dynamics 

3 0.176 0.854 0.849 0.522 -0.264 
6 0.234 0.823 0.835 0.694 -0.382 
12 -0.010 0.810 0.789 0.699 -0.411 
36 -2.201 0.731 2.313 0.273 -0.027 
60 -3.354 0.988 3.490 0.641 -0.161 
120 -3.088 1.230 3.312 0.767 -0.243 

       
Random walk 3 2.613 1.221 2.871 0.730 -0.221 

6 3.136 1.234 3.358 0.767 -0.242 
12 3.612 1.227 3.804 0.759 -0.262 
36 2.743 0.935 2.890 0.509 -0.163 
60 1.954 0.719 2.076 0.477 -0.107 
120 2.404 0.368 2.430 0.619 -0.104 
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Table 5. Out-of-sample 6-month-ahead forecasting results (N = 19 individual 
forecasts) 

Model Name Maturity 
(𝜏) Mean Std. 

Dev. RMSE 𝜌(1) 𝜌(12) 

Nelson–Siegel with AR(1) 
factor dynamics 

3 -0.870 1.902 2.029 0.765 -0.232 
6 -0.519 1.882 1.886 0.788 -0.231 
12 -0.321 1.758 1.724 0.785 -0.223 
36 -1.731 1.095 2.027 0.557 -0.080 
60 -2.588 0.756 2.689 0.497 0.123 
120 -1.989 0.479 2.042 0.723 -0.070 

       
Nelson–Siegel with 
VAR(1) factor dynamics 

3 0.346 2.450 2.386 0.720 -0.249 
6 0.532 2.339 2.316 0.755 -0.248 
12 0.483 2.078 2.060 0.776 -0.245 
36 -1.321 1.095 1.691 0.573 -0.157 
60 -2.241 0.570 2.307 0.316 0.065 
120 -1.622 0.451 1.679 0.225 -0.186 

       
Random walk 3 1.276 1.428 1.877 0.728 -0.218 

6 1.120 1.465 1.802 0.760 -0.224 
12 0.609 1.452 1.526 0.752 -0.224 
36 -1.579 1.068 1.884 0.506 -0.094 
60 -2.233 0.798 2.362 0.455 0.065 
120 -1.071 0.373 1.130 0.725 0.061 

 

Though our results contradict the evidence found by Diebold and Li (2006), 

many scholars also reached similar outcomes that do not confirm the superior 

forecasting performance of the Nelson-Siegel model. According to Duffee 

(2002), random walk forecasts dominate the ones produced by affine models 

similar to DNS due to the dependence of risk compensation on the interest rate 

volatility. In the paper written by Molenaars, Reinerink, and Hemminga (2013), 

the scholars also found that DNS is not capable of delivering convincing 

forecasting results when compared to the random walk model. Their conclusion 

was backed by the hypothesis about “the short-lived success of the model.” In 

other words, the authors claimed that the model is valid for only a limited period 

of time (Molenaars, Reinerink, and Hemminga 2013). The evidence that supports 
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this hypothesis can be found in the papers by Mönch (2008), Reschenhofer and 

Stark (2019), who point to the fact that robust forecasting performance of the 

Dynamic Nelson-Siegel model popularized by Diebold and Li (2006) may come 

from the choice of forecast period that scholars utilized for forecasting. Similar 

to our case, this rationale can partly explain the matter of fact that at some points 

in time the model outperforms RW, whereas at other periods it underperforms 

(Mönch 2008). 

 

Table 6. Out-of-sample 12-month-ahead forecasting results (N = 19 individual 
forecasts) 

Model Name Maturity 
(𝜏) Mean Std. 

Dev. RMSE 𝜌(1) 

Nelson–Siegel with AR(1) 
factor dynamics 

3 -0.560 1.542 1.548 0.575 
6 -0.022 1.449 1.355 0.602 
12 0.355 1.330 1.294 0.606 
36 -1.330 1.314 1.811 0.450 
60 -2.437 0.990 2.607 0.417 
120 -1.812 0.291 1.832 0.485 

      
Nelson–Siegel with 
VAR(1) factor dynamics 

3 -0.124 2.174 2.037 0.411 
6 0.329 2.015 1.914 0.437 
12 0.578 1.813 1.792 0.451 
36 -1.316 1.683 2.051 0.366 
60 -2.461 1.331 2.758 0.319 
120 -1.832 0.490 1.888 0.262 

      
Random walk 3 -0.781 1.480 1.589 0.573 

6 -0.057 1.408 1.318 0.603 
12 0.636 1.324 1.392 0.611 
36 -0.274 1.381 1.321 0.470 
60 -1.014 1.079 1.431 0.448 
120 -0.035 0.324 0.305 0.547 
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The forecast defects may, in fact, come from a variety of sources, some of which 

could be avoided. First and foremost, one should point to the fact that the yields 

that were used as inputs in the model are retrieved from Bloomberg, which uses 

the data from the NBU. Since the National Bank of Ukraine uses the Nelson-

Siegel model to build yield curves, we fail to incorporate unsmoothed zero-

coupon discounted yields as inputs for our model. Also, as noted by Diebold and 

Li (2006), pricing errors, which arise due to some bonds' illiquidity, may affect 

the results. Adding additional variables addressing this issue could potentially 

improve the outcome. 

To check the hypothesis about potential defects related to the data inputs, 

following similar methodology, we also constructed forecasting tables for the 

yield curves based on the Canadian zero-coupon yields (the yields were not 

constructed using the Nelson-Siegel model). Tables 11-13 in Appendices show 

that out-of-sample forecasting results are significantly improved in absolute and 

relative terms for AR (1) and VAR (1) model for all forecasting horizons. It is 

worth noticing that the results of the Nelson-Siegel VAR (1) factor dynamics 

model also outperform the random walk model for 12-month-ahead forecasting 

(RMSE are lower). Though this model specification is believed to be inferior to 

AR (1) processes (Diebold and Li 2006), in our example, it is revealed to be 

superior to both AR (1) and RW models. 

 

5.3 Macro-Yield Model Estimation Results 

In addition to the above analysis of the forecasting performance of selected 

models, this paper also investigates the interactions between macroeconomic 

fundamentals such as key policy rate, inflation, and real economic activity and 

yield-curve factors. Following the methodology described in Chapter 3, we 
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managed to produce VAR estimates of the yields-macro model, as well as to track 

interactions between the macro variables and yield-curve variables using impulse 

responses and variance decompositions of the yields-macro model. 

Similar to the approach by Diebold, Rudebusch, and Aruoba (2006), Table 7 

reports the estimates of the parameters of the yields-macro model, where each 

row presents coefficients from the transition equation for the respective state 

variable. In the table, bold entries denote parameter estimates significant at the 5 

percent level, and standard errors are reported in parentheses (Diebold, 

Rudebusch, and Aruoba 2006). One can observe that while many off-diagonal 

elements seem to be insignificant, the coefficients of our interest appear to be 

jointly significant (except for the IKSO variable). 

 

Table 7. Yields-macro model parameter estimates VAR Parameters 

Parameters β0t-1 β1t-1 β2t-1 CPIt-1 IRt-1 IKSOt-1 𝜇 

β0t 
0.55 

(0.25) 
-0.23 
(0.22) 

-0.02 
(0.06) 

0.00 
(0.02) 

0.21 
(0.17) 

0.03 
(0.04) 

0.89 
(2.18) 

β1t 
0.17 

(0.31) 
1.06 

(0.27) 
0.01 

(0.07) 
0.01 

(0.03) 
-0.12 
(0.21) 

0.00 
(0.04) 

0.31 
(2.70) 

β2t 
0.35 

(0.71) 
0.18 

(0.61) 
0.49 

(0.16) 
-0.04 
(0.06) 

-0.22 
(0.48) 

0.06 
(0.11) 

9.52 
(6.08) 

CPIt 
1.10 

(0.51) 
0.78 

(0.43) 
0.32 

(0.12) 
0.92 

(0.04) 
-0.89 
(0.34) 

-0.09 
(0.07) 

-3.93 
(4.34) 

IRt 
0.38 

(0.15) 
0.51 

(0.13) 
-0.07 
(0.03) 

0.05 
(0.01) 

0.43 
(0.10) 

0.05 
(0.02) 

2.00 
(1.30) 

IKSOt 
0.44 

(0.93) 
-0.00 
(0.80) 

-0.23 
(0.22) 

-0.08 
(0.08) 

-0.25 
(0.63) 

0.20 
(0.14) 

10.34 
(7.99) 
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TABLE 7 – Continued (estimated Q matrix) 
 

Parameters β0t β1t β2t CPIt IRt IKSOt 
β0t 0.01 -0.01 0 0 0 0 
β1t -0.01 0.02 -0.01 0 0 0 
β2t 0 -0.01 0.08 0 -0.01 0.04 

CPIt 0 0 0 0.04 0 0 
IRt 0 0 -0.01 0 0 0 

IKSOt 0 0 0.04 0 0 0.15 
 

5.4 Impulse Response Functions and Variance Decompositions 

After conducting an impulse response analysis, we obtained mixed results. In 

particular, while some of the interactions are in line with macroeconomic theory 

and outcomes of Diebold, Rudebusch, and Aruoba (2006), some responses such 

as one of the yield-curve factors to the shock in IR remained muted. Table 8 

provides a brief comparison of our results with Diebold, Rudebusch, and Aruoba 

(2006) and Figure 8 illustrates the responses of macro factors to shocks in yield-

curve factors and vice versa. 
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Table 8. Comparison of impulse responses of our model and Diebold, 
Rudebusch, and Aruoba (2006) (DB = Diebold) 

Impulses→ 
Responses ↓ β0 β1 β2 IR CPI IKSO 

β0 

β0 reacts to 
its own 

shocks as in 
DB, but less 
persistently. 

In line with DB, 
negligible, even 

though in DB we 
see some 

relationship, total 
flat in our case. 

More or less in 
line with DB, 
where it is less 

negligible. 

Different 
from DB, 
negligible. 

Slightly 
different 

from DB, it 
is negligible. 

Different 
from DB, it 
is negligible. 

β1 

Not as DB: 
strong 

negative 
reaction to 
shocks in 

beta1. 

In line with DB, 
there is a light 

positive response, 
decreases over 

time. 

Response in 
line with DB, 

negligible. 

Different 
from DB, 
negligible. 

Response in 
line with DB, 

negligible. 

Slightly 
different 

from DB, it 
is negligible. 

β2 
Response in 
line with DB, 

negligible. 

Different from 
DB: strong 

negative 
response, it fades 
away over time. 

In line with 
DB, strong 
response in 
short term 

shocks, 
decreasing over 

time. 

More or less 
in line, here 

it is 
negligible, 

slightly 
stronger in 

DB. 

Response in 
line with DB, 

negligible. 

Slightly 
different 

from DB, it 
is negligible. 

IR 
Response in 
line with DB, 

negligible. 

In line with DB, 
initial timid 

response which 
decreases over 

time. 

Response in 
line with DB, 

negligible. 

Much lighter 
response 
than DB. 

Response in 
line with DB, 

negligible. 

Different 
from DB; it 
is negligible. 

CPI 
In line with 
DB, even 
stronger 
response. 

Different from 
DB: strong 
negative, 
persistent 
response. 

Different from 
DB: strong 
response, 

which remains 
persistent. 

Different 
direction of  
the response 
from DB, as 
it is negative 

and less 
persistent. 

Response in 
line with DB, 
strong and 
persistent. 

Different 
from DB; it 
is negligible. 

IKSO 

Response in 
line with DB, 

negligible, 
but 

decreasing 
over time 

(contrarily to 
DB). 

More or less in 
line with DB, 

quite negligible, 
in DB slightly 

more persistent. 

Different from 
DB: positive 

response 
turning 

negative and 
neutralizing 
over time. 

Stronger 
response in 
short term 

shocks, 
different 
from DB. 

Different 
from DB, it 

is much 
more 

negligible. 

In line with 
DB, short 

term strong 
response 

then 
absorbed. 
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Figure 8. Impulse responses of the yields-macro model 

 

Following Diebold, Rudebusch, and Aruoba (2006), variance decompositions 

were used to analyze macro and yield curve interactions. In Table 9, variance 

decompositions of the parameters/yields at respective forecast horizons are 

shown. From the table, one can observe that very little of the variation in rates is 

driven by the macro factors, which suggests that a great portion of idiosyncratic 
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variation that is unrelated to macroeconomic variables is present in the yield curve 

(Diebold, Rudebusch, and Aruoba 2006). 

 

Table 9. Variance decompositions, yields 

 Horizon β0 β1 β2 CPI IR IKSO 

β0 
Yields-only model 

1 1.00 0.00 0.00 - - - 
12 0.99 0.01 0.00 - - - 
60 0.97 0.03 0.00 - - - 

        
Yields-macro 
model 

1 1.00 0.00 0.00 0.00 0.00 0.00 
12 0.93 0.00 0.02 0.01 0.02 0.01 
60 0.92 0.01 0.02 0.01 0.02 0.01 

        
β1 
Yields-only model 

1 0.74 0.26 0.00 - - - 
12 0.69 0.31 0.00 - - - 
60 0.66 0.34 0.00 - - - 

        
Yields-macro 
model 1 0.78 0.22 0.00 0.00 0.00 0.00 

 12 0.72 0.24 0.03 0.01 0.01 0.00 
 60 0.70 0.24 0.04 0.02 0.01 0.00 
        
β2 
Yields-only model 

1 0.00 0.28 0.72 - - - 
12 0.00 0.32 0.68 - - - 
60 0.00 0.33 0.67 - - - 

        
Yields-macro 
model 1 0.00 0.28 0.72 0.00 0.00 0.00 

 12 0.02 0.26 0.69 0.02 0.00 0.01 
 60 0.02 0.25 0.69 0.02 0.00 0.01 

 

Table 10 reports the variance decompositions for the macroeconomic variables. 

From the table, one can infer that the yield-curve factors do predict substantial 

movements in CPI (though for the horizons of 12 and 60 months only), and key 

policy rate (IR). 
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Table 10. Variance decompositions, macroeconomic variables 

 
 Horizon β0 β1 β2 CPI IR IKSO 

CPI 
Macro-only model 

1 - - - 1.00 0.00 0.00 
12 - - - 0.76 0.21 0.02 
60 - - - 0.69 0.28 0.03 

        
Yields-macro 
model 

1 0.00 0.00 0.00 1.00 0.00 0.00 
12 0.22 0.11 0.25 0.37 0.04 0.01 
60 0.29 0.13 0.22 0.32 0.03 0.00 

        
IR 
Macro-only model 

1 - - - 0.03 0.97 0.00 
12 - - - 0.02 0.95 0.03 
60 - - - 0.03 0.94 0.03 

        
Yields-macro 
model 1 0.00 0.22 0.04 0.03 0.71 0.00 

 12 0.16 0.46 0.10 0.15 0.12 0.02 
 60 0.15 0.41 0.14 0.17 0.11 0.02 
        
IKSO 
Macro-only model 

1 - - - 0.00 0.00 0.99 
12 - - - 0.01 0.01 0.99 
60 - - - 0.01 0.01 0.99 

        
Yields-macro 
model 1 0.00 0.00 0.14 0.00 0.05 0.80 

 12 0.05 0.01 0.17 0.02 0.05 0.72 
 60 0.05 0.01 0.17 0.02 0.05 0.72 

 

Overall, the analysis of variance decompositions suggests that the impact of the 

yield curve on the macro variables are more critical than the effects of the macro 

variables on the yield curve. A possible explanation for this outcome can be the 

fact that macroeconomic variables are rough approximations for the sample and 

specification of our model. 
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C h a p t e r  6  

CONCLUSIONS 

This study investigates the forecasting performance of the Dynamic Nelson-

Siegel (DNS) model. We follow the approach applied by Diebold and Li (2006), 

which suggests using a parametric model that places strict structure on factor 

loadings (level, slope, and curvature) of the yield curve. Though the emphasis in 

this paper is put on univariate modeling with AR (1) factor dynamics, the random 

walk model is also used as an alternative benchmark model. Moreover, vector 

autoregressive VAR (1) counterpart of the AR (1) model was examined despite 

the evidence of the poor forecasting results generated by this model (Diebold and 

Li 2006). 

Following Diebold and Li (2006), the theoretical and empirical frameworks of 

the DNS were first introduced. Though it was revealed that equilibrium modeling 

is commonly used for forecasting purposes as opposed to no-arbitrage models 

that mainly focus on fitting performance of yield curves, these models are subject 

to limitations that often result in poor forecasting performance. Diebold and Li 

(2006) went beyond no-arbitrage and equilibrium models and used the Nelson-

Siegel framework to forecast the yield curve by forecasting the factors of the 

curve. We applied the same approach as discussed by Diebold and Li (2006) to 

the Ukrainian government bond yield data covering the period from 2015:08 up 

to 2019:11. 

Our study provided evidence that the DNS model for Ukrainian data was inferior 

in terms of forecasting performance compared to the random walk model for all 

but short-term horizons. The results were in contrast with those of Diebold and 

Li (2006), who found that the DNS model produces yield curve forecasts that are 
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superior to a random walk, especially for the long-term forecasting horizons. 

Despite this fact, extensive literature suggests that our findings are not 

uncommon. In particular, the time period of the data sample is hypothesized to 

be the factor that explains why the Diebold and Li (2006) model produced 

relatively good forecasts of the yield curve. 

The second part of our research is focused on the incorporation of both yield 

factors (level, slope, and curvature) and macroeconomic variables (target interest 

rate, CPI, and IKSO). The state-space representation of the DNS allowed testing 

the hypotheses regarding dynamic interactions between the macroeconomy and 

the yield curve. Impulse response analysis and variance decompositions of yields 

and macroeconomic indicators were performed to assess the links between these 

variables. 

The study found that there is weak evidence of macroeconomic effects on the 

future yield curve. In contrast, there is more robust evidence of the influence of 

yield curve factors on future macroeconomic developments – the results that 

contradict the findings obtained by Diebold, Rudebusch, and Aruoba (2006). 

However, academic literature devoted to the bidirectional causality between 

macroeconomic fundamentals and yield-curve factors also appeared mixed. 

While Diebold, Rudebusch, and Aruoba (2006) found more persuasive evidence 

of the macro effects on the future dynamics of yield-curve factors, our results are 

in line with the findings of Estrella and Mishkin (1998), and Stock and Watson 

(2000), who argue that asset prices are useful predictors of inflation, real output 

growth, and other macroeconomic indicators. Among other factors, the scholars 

point to the importance of the geography and time period of the data under 

analysis in producing accurate forecasting results (Stock and Watson 2000). 
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When it comes to the implications of the research, several issues need to be 

considered. First, as our research showed, the Nelson-Siegel model is not 

superior to an alternative random walk model in the context of long-term 

forecasting horizons. At the same time, the forecasting performance of the model 

for shorter future horizons is more promising and is worth using by policymakers 

for forecasting yield curves. Second, our results revealed that yield-curve factors 

are more potent in their effects on macroeconomic fundamentals than the effect 

of macroeconomic indicators on the future dynamics of yield-curve factors. This 

result provides a better characterization of the dynamic interactions between the 

macroeconomy and the yield curve that policymakers should be mindful of when 

it comes to policy-related decisions. 

Finally, it is worth highlighting that there are several limitations that our research 

potentially faces, including issues associated with data collection and cleaning and 

period under analysis. Among the directions of future research, one may consider 

utilizing unsmoothed discounted zero-coupon yields to assess better the fitting 

performance of the DNS to the observed yield curves. As suggested by the 

literature, such an approach may improve the forecasting performance of the 

model, both in the short-term and long-term periods. Also, the time period of 

the data sample appears to be a critical issue in our research. Therefore, 

replicating the analysis over another period may produce more promising results. 
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APPENDIX 

FORECASTING PERFORMANCE OF DNS (CANADIAN DATA) 

Table 11. Out-of-sample 1-month-ahead forecasting results (Canada, N = 19 
individual forecasts) 

Model Name Maturity 
(𝜏) Mean Std. 

Dev. RMSE 𝜌(1) 𝜌(12) 

Nelson–Siegel with AR(1) 
factor dynamics 

3 -0.139 0.149 0.201 0.668 -0.219 
6 -0.218 0.181 0.280 0.717 -0.129 
12 -0.277 0.233 0.358 0.744 -0.038 
36 0.049 0.350 0.344 0.771 -0.041 
60 0.255 0.410 0.474 0.769 -0.110 
120 0.443 0.479 0.644 0.753 -0.203 

       
Nelson–Siegel with 
VAR(1) factor dynamics 

3 -0.130 0.164 0.206 0.654 -0.144 
6 -0.227 0.189 0.292 0.706 -0.056 
12 -0.313 0.230 0.385 0.712 0.040 
36 -0.035 0.346 0.338 0.721 0.008 
60 0.160 0.427 0.446 0.727 -0.088 
120 0.344 0.537 0.625 0.717 -0.192 

       
Random walk 3 -1.170 0.132 1.177 0.710 -0.123 

6 -1.285 0.117 1.290 0.689 0.018 
12 -1.345 0.176 1.355 0.800 -0.218 
36 -0.654 0.335 0.730 0.873 -0.403 
60 -0.055 0.382 0.375 0.872 -0.434 
120 0.651 0.406 0.762 0.861 -0.455 
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Table 12. Out-of-sample 6-month-ahead forecasting results (Canada, N = 19 
individual forecasts) 

Model Name Maturity 
(𝜏) Mean Std. 

Dev. RMSE 𝜌(1) 𝜌(12) 

Nelson–Siegel with AR(1) 
factor dynamics 

3 -0.442 0.154 0.466 0.663 -0.261 
6 -0.443 0.197 0.482 0.712 -0.218 
12 -0.378 0.253 0.449 0.716 -0.121 
36 0.211 0.342 0.391 0.710 -0.032 
60 0.516 0.371 0.628 0.707 -0.060 
120 0.784 0.413 0.879 0.726 -0.103 

       
Nelson–Siegel with 
VAR(1) factor dynamics 

3 -0.369 0.208 0.420 -0.115 -0.106 
6 -0.440 0.215 0.487 -0.207 -0.053 
12 -0.478 0.248 0.534 -0.056 0.047 
36 -0.048 0.306 0.299 0.081 0.084 
60 0.237 0.395 0.449 0.263 -0.016 
120 0.523 0.689 0.845 0.430 -0.070 

       
Random walk 3 -1.189 0.031 1.189 0.457 -0.061 

6 -1.294 0.099 1.297 0.651 -0.152 
12 -1.338 0.186 1.350 0.632 -0.139 
36 -0.613 0.314 0.683 0.655 -0.137 
60 0.000 0.350 0.337 0.665 -0.159 
120 0.721 0.375 0.806 0.687 -0.186 

 
 
  



 

 43 

Table 13. Out-of-sample 12-month-ahead forecasting results (Canada, N = 19 
individual forecasts) 

Model Name Maturity 
(𝜏) Mean Std. 

Dev. RMSE 𝜌(1) 

Nelson–Siegel with AR(1) 
factor dynamics 

3 -0.669 0.085 0.674 0.556 
6 -0.610 0.079 0.615 0.475 
12 -0.466 0.090 0.474 0.109 
36 0.305 0.091 0.317 -0.442 
60 0.697 0.101 0.704 -0.255 
120 1.054 0.136 1.062 0.025 

      
Nelson–Siegel with 
VAR(1) factor dynamics 

3 -0.496 0.047 0.498 0.262 
6 -0.446 0.030 0.447 -0.391 
12 -0.334 0.080 0.342 -0.251 
36 0.246 0.144 0.281 0.128 
60 0.481 0.140 0.498 0.064 
120 0.643 0.140 0.656 0.034 

      
Random walk 3 -1.096 0.022 1.096 0.322 

6 -1.133 0.025 1.134 -0.292 
12 -1.106 0.063 1.108 -0.333 
36 -0.327 0.093 0.338 -0.371 
60 0.245 0.106 0.265 -0.194 
120 0.887 0.161 0.900 0.171 

 


