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Abstract 

PARTIALLY COMMON 
VALUES IN AUCTIONS 

by Zlata Kibalko 

Thesis Supervisor: Professor Pavlo Prokopovych 
 

This research is focused on the partially common (interdependent) values in 

the three types of  the sealed-bid auctions. We introduced the restricted 

parameter to the value functions that controls the weights which each bidder 

assigns to his or her signal and the opponent’s one. Assuming the existence of  

the Bayesian-Nash equilibrium in the strictly increasing strategies, we have been 

looking for it and investigating whether the optimal strategies and the expected 

seller’s revenue are dependent on the introduced parameter. For the auctions 

where the auctioneer’s expected revenue dependents on the parameter, we 

conducted the revenue comparison analysis. 
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C h a p t e r  1  

INTRODUCTION 

Traditionally all auctions are divided in two extreme groups according to the 

type of  bidders’ valuations: private and common value auctions. However, 

these pure models do not commonly appear in the real world, because people 

used to evaluate objects in more sophisticated way. Players always have their 

own valuations about an object, and their own valuations are influenced by 

others’ opinions at the same time. For instance, it is not really correct to exclude 

the possibility of  reselling an object by a winner in the future, and that is the 

reason why people definitely take into account others’ expected valuations of  

an object when they are bidding.  

Nevertheless, theory always simplifies behavior of  bidders, there are cases 

between private and common values which potentially are more precise and 

definitely worth studying. For instance, Goeree and Offerman (2003) 

introduced new valuation type in which bidders’ signals consist of  private and 

common value components at the same time. Birulin and Izmalkov (2011) 

studied efficiency properties of  the English auction with interdependent values 

and provided a lot of  examples of  value functions which represent this type of  

valuation.   

We studied interdependent values. The motivation to consider exactly this type 

of  valuation is that usually people possess different information about the value 

of  the object. Bidders have intensive to consider expectations about others’ 

signals, as it might be profitable for them. We are focused on the special form 

of  value functions in the three types of  auctions: first-price sealed-bid auctions, 

second-price sealed-bid auctions and all-pay sealed-bid auctions.  

Two first auction types are chosen for the analysis as they are the most 

fundamental ones in the auction theory. In the first-price sealed-bid auction all 
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bidders submit their bids simultaneously and no one bidder knows the bids 

which were submitted by other players. The object goes to the player who 

submitted the highest bid and the winner pays his or her own bid to the 

seller/auctioneer. In the second-price sealed-bid auction all bidders submit 

their bids simultaneously and no one bidder knows the bids which were 

submitted by other players. The winner is the player who submitted the highest 

bid, but he or she pays the second highest bid to the seller/auctioneer. 

In all-pay sealed-bid auctions as in first-price sealed-bid auctions all bids are 

submitted simultaneously and the winner is the player who submitted the 

highest one, but every player should pay his or her bid to the seller. Also, all-

pay sealed-bid auctions are interesting as they have a wide range of  applications. 

For instance, they are applicable to political contests as politicians usually spend 

huge amounts of  money during election campaigns in order to attract more 

voters. It is logically to assume that the more money is spent by the politician, 

the more is the number of  voters that he or she has attracted. So, exactly as in 

the proposed auction model, every player pays, while there is only one election 

winner. 

We are to investigate what are the equilibrium bidding strategies in the 

symmetric first-price sealed-bid auction, second-price sealed-bid auction and 

all-pay sealed-bid auction with two bidders under interdependent (partially 

common) values, where bidders’ signals are correlated, and in the first-price 

sealed-bid auction and the second-price sealed-bid auction with two or three 

asymmetric bidders where bidders’ signals are independent. Then, we are to 

answer the question which auction is the best one for the auctioneer by 

comparing the expected revenues.   

Thus, the main goal of  the thesis is to study three classical auction types with 

interdependent values and tell which auction among them is the best one for 

the seller. 
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The paper is organized as follows. Chapter 2 overviews some related literature 

about the classical auctions and the auctions with the extensions as the 

interdependent valuations and asymmetric bidders.  Chapter 3 provides the 

description of  the methodology. Chapter 4 presents the investigation of  the 

existence of  the Nash equilibrium strategies in the symmetric auctions and the 

dependence of  the strategies on the parameter presented in the value functions. 

Chapter 5 describes the existence of  the Nash equilibrium strategies in the 

asymmetric auctions, the dependence of  the strategies on the parameter 

presented in the value functions and the revenue comparison analysis. Chapter 

6 concludes the main results. 
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C h a p t e r  2  

LITERATURE REVIEW 

This chapter describes the books and papers concentrated on all-pay, first- 

and second-price sealed bid auction with both traditional (pure private and 

common values) and non-traditional types of  valuations.  

A lot of  published theoretical researches in the auction theory are based on the 

same fundamental approaches and methodologies of  defining the model and 

its assumptions and investigating the most important questions as the existence 

of  equilibrium bidding strategies, efficiency of  the auctions and what is the 

auctioneer’s expected revenue. Menezes and Monteiro (2005) in their book 

brought together all the important methodologies and results developed and 

obtained by Paul Klemperer and Vickrey in their early papers. They showed 

techniques and methodologies of  computing equilibrium bidding strategies in 

the first- and second-price sealed bid auctions with pure private and common 

values which we follow. Also, there are described private and common values 

for bidders’ signals of  both types: independently distributed and correlated. 

The authors provided revenue comparison analysis for all the auctions and 

valuations mentioned above. However, they discuss only classical symmetric 

models and do not introduce models with asymmetric bidders.  

Krishna (2010) provides the theoretical basis needed for studying auctions with 

asymmetric bidders. The author describes the methodology of  studying 

asymmetric auctions, defining the equilibrium bidding strategies and the 

auctioneer’s expected revenue which we use in our research. Also, Krishna 

introduces the definition of  the interdependent values and discusses an 

intuition behind them. He provided analysis of  the auctions with pure common 

values from the point of  view of  the special case of  the interdependent values 

when ex-post valuation of  an object for all bidders is the same. In addition, 

Krishna relaxes the assumption of  independently distributed signals and 
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describes generally the case of  the first- and second-price sealed-bid auctions 

with interdependent values under affiliation. 

Interdepend values are well studied in English auctions. English auction is 

open-bid auction, where bids increase until there is no bidder who is willing to 

top the current maximum bid. For example, Birulin and Izmalkov (2011) 

studied the English auction with interdependent values. They were focused on 

the efficiency properties, but also the authors provided a lot of  examples of  

value functions which represent this type of  valuation. They introduced several 

models of  the English auction where the value functions of  the bidders were 

symmetric or asymmetric and depended on some positive parameter, as well as 

symmetric or asymmetric and in-depended of  any parameters. However, we are 

focused on the sealed-bid auctions with the interdependent values. 

The second-price sealed-bid auction with interdependent values was explicitly 

introduced by Osborne (2000). The author derived the symmetric equilibrium 

bidding strategy function for that auction in the case of  two bidders. Bidders’ 

signals are independently and uniformly distributed in that model. The form 

of  the value function of  the bidder i was considered as , where 

 is the other player’s signal and α ≥ γ ≥ 0, the author showed that this model 

includes the cases of  the independent pure private values as well as pure 

common values. The obtained result is . That is important that 

the Nash equilibrium strategies directly depend on α and γ. However, Osborne 

does not do the revenue analysis and did not show how the seller’s expected 

revenue depend on the values of  α and γ. This example is very relevant as our 

study is done for the similar form of  the value functions, but we introduce only 

one parameter for defining the weights which each bidder assigns to his/her 

signal and the opponent’s one. In addition, we relax the assumption of  the 

independent distribution of  the signals for the symmetric auctions. However, 

we follow the same core assumptions about the distribution of  the signals, as 

vi = α ti + γ tj

tj

bi = (α + γ)ti
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Osborne introduced for the symmetric second-price sealed bid auction, in the 

models with asymmetric bidders. 

Nevertheless, John H. Kagel and Dan Levin (2005) did not study the 

interdependent values; the asymmetry in common value auctions which were 

introduced by the authors is interesting to be mentioned. Their idea was to add 

one advantaged bidder to the original common value auction. The bidder has 

advantage as his ex-post valuation is slightly higher than the corresponding 

valuations of all other bidders. As a result, the authors showed that this slight 

bidder’s advantage does not change considerably the seller’s expected revenue 

in the second-price sealed-bid auction, however, has an explosive effect on 

the auctioneer’s expected revenue in English auction.  

Another auction model which deviates from the classical ones in terms of  value 

function was introduced by Goeree and Theo Offerman (2003). They had the 

same motivation as we do for studying the auctions with other than classical 

value functions. Jacob K. Goeree and Theo Offerman (2003) combined 

interdependent common and private values signals together and obtained the 

value function of  the absolutely new form. For example, the interdependent 

values include only private signals. They computed symmetric equilibrium 

bidding strategies in the first- and second-price sealed-bid and English auctions 

with these combined valuations. It is important to mention that the ‘traditional’ 

types of  valuations are included to all the auction models as the special cases. 

We also constructed the value functions for our research in the way they follow 

the same property. Goeree and Offerman conducted revenue comparison 

analysis and discovered that all the studied auctions are revenue equivalent. 

However, it was mentioned in the paper that that result is very sensitive to the 

assumption that all the signals are independently distributed. That is why we 

considered correlated signals for the symmetric auctions in the thesis. 
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C h a p t e r  3  

METHODOLOGY 

As defined above we are to study what are the equilibrium bidding strategies in 

symmetric first-price sealed-bid auction, second-price sealed-bid auction and 

all-pay sealed-bid auction with two bidders under interdependent (partially 

common) values where bidders’ signals are correlated and conduct revenue 

comparison analysis. Also, we are to study the asymmetric first-price sealed-bid 

auction, second-price sealed-bid and all-pay auction with two or three bidders. 

In this chapter we provide the description of  the methodology using as the 

example the case of  the symmetric first-price sealed-bid auction with two 

bidders. 

So, we consider the symmetric auctions where two bidders compete for a single 

object. Both of  them receive private signals about the value of  an object (  

and ). Bidders are assumed to be risk-neutral. It is assumed that the signals 

are correlated and are drown from the [0,1]. 

The partially common values (interdependent values) will be presented as: 

 

 

where α (1 ≥ α ≥ 0.5) is the parameter controlling the weights which each 

bidder assigns to his/her signal and the opponent’s one.  

We suppose that each bidder follows the same strictly increasing bidding 

strategy . 

 

s1

s2

v1 = αs1 + (1 − α)s2

v2 = αs2 + (1 − α)s1

b( * )



 

 8 

For example, the first bidder’s expected payoff if the first bidder wins in the 

first-price sealed-bid auction is:   

= , 

where the first bidder’s signal is , his bid is  and the other player’s bid is 

. 

The first bidder with signal  is going to choose the strategy  in order to 

maximize his expected payoff. We can interpret it as choosing some s, 

where , as it was mentioned above that  is strictly increasing. 

The first bidder’s expected value of the object is:  

. 

,  

where  is conditional density function. 

= . 

Then, using the first order condition and solving a differential equation we 

calculate the symmetric equilibrium bidding strategies. It is interesting to see 

how the equilibrium bidding strategies depend on alpha.  

The final step is to compute the auctioneer’s expected revenue. The 

auctioneer’s expected revenue is the expected value of the highest bid in the 

first-price sealed-bid auctions, the expected value of the second highest bid 

in the second-price sealed-bid auctions, the expected total amount bid in all-

pay auctions. The auction with the highest expected revenue is considered the 

optimal auction for a seller among the studied auctions. 

π1 (E(v1 |s1, b2 < b1) − b1)P(b2 < b1)

s1 b1

b2

s1 b1

b1 = b(s) b( * )

E(αs1 + (1 − α)s2 |b2 < b1) = αs1 + (1 − α)E(s2 |b2 < b1)

E(s2 |v2 < v1) =

s
∫
0

s2 f (s2 |s1)ds2

s
∫
0

f (s2 |s1)ds2

f ( * |s)

π1

s

∫
0

(αs1 + (1 − α)s2 − b1(s))f (s2 |s1)ds2
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C h a p t e r  4  

SYMMETRIC AUCTIONS 

4.1. Second-Price Sealed-Bid Auction 

We consider the auction where 2 bidders compete for a single object. Both of  

them receive private signals about the value of  an object (  and ). Bidders 

are assumed to be risk-neutral. It is assumed that signals are correlated and are 

drown from the [0,1]. 

The partially common values (interdependent values) will be presented as: 

 

 

where α (1 ≥ α ≥ 0.5) is the parameter controlling the weights which each 

bidder assigns to his/her signal and the opponent’s one. 

We suppose that each bidder follows the same strictly increasing bidding 

strategy . 

Let us consider that  is the second player’s bid, where  is assumed 

to be continuous and strictly increasing function. 

The expected payoff of the first player is: 

 

,  

s1 s2

v1 = αs1 + (1 − α)s2

v2 = αs2 + (1 − α)s1

b( * )

b(s2) b( * )

π1 = E [(v1(s1, s2) − b (s2))Ib (s)> b (s2) |s1] = E [(v1(s1, s2) − b (s2))Is> s2 |s1]

π1 =
s

∫
0

(αs1 + (1 − α)s2 − b(s2))f (s2 |s1)ds2
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where  is conditional density function. 

The first-order condition: 

, 

, 

. 

, we can say that  is equal to  

because the value function is continuous and increasing as the bidding 

strategy function is. 

So, it is optimally to set . 

Thus, the equilibrium bidding strategy is . 

 

4.2 First-Price Sealed-Bid Auction 

We again suppose that each bidder follows the same strictly increasing 

bidding strategy . The calculation technique follows from Menezes and 

Monteiro (2005). 

The expected payoff of the first bidder is: 

,  

where  is the first player’s bid. 

f ( * |s)

π′�1 = (αs1 + (1 − α)s − b2(s))f (s |s1)

(αs1 + (1 − α)s − b(s))f (s |s1) = 0

αs1 + (1 − α)s − b(s) = 0

b(s) = αs1 + (1 − α)s b(s) αs + (1 − α)s

s = s1

beq(s) = s

b( * )

π1 =
s

∫
0

(αs1 + (1 − α)s2 − b(s))f (s2 |s1)ds2

b(s)
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The first-order condition: 

 

After rearranging the first-order condition is: 

, 

. 

We obtained the following differential equation: 

. 

Let us set . 

, 

. 

Then, in order to solve this equation, we use the integrating factor method. 

It is easy to see that integrating factor has to solve . 

 is an integrating factor. Thus, 

. 

π1 =
s

∫
0

(αs1 + (1 − α)s2)f (s2 |s1)ds2 − b(s)F(s |s1)

π′�1 = (αs1 + (1 − α)s)f (s |s1) − b′�(s)F(s |s1) − b(s)f (s |s1)

π′�1 = (αs1 + (1 − α)s − b(s))f (s |s1) − b′�(s)F(s |s1)

(αs1 + (1 − α)s − b(s))f (s |s1) − b′�(s)F(s |s1) = 0

b′�(s) = (αs1 + (1 − α)s − b(s))
F(s |s1)

f (s |s1)

s = s1

b′�(s1) = (αs1 + (1 − α)s1 − b(s1))
F(s1 |s1)

f (s1 |s1)

b′�(s1) + b(s1)
f (s1 |s1)
F(s |s1)

= (αs1 + (1 − α)s1)
f (s1 |s1)
F(s1 |s1)

P′� = P
f (s1 |s1)
F(s1 |s1)

P(s) = exp[ −
1

∫
s

f (u |u )
F(u |u ) du ]

(Pb)′�(s1) = P(s1)b′�(s1) + P′�(s1)b(s1)



 

 12 

Substituting  with : 

. 

Substituting  with : 

. 

As  and , the limits are 0 and : 

. 

Representing the above expression in two forms: 

  (1) 

  (2) 

From (1) and  we obtain: 

. 

From (2) by integrating by parts and rearranging we obtain: 

P′� P
f (s1 |s1)
F(s1 |s1)

(Pb)′�(s1) = P(s1)b′�(s1) + P(s1)b(s1)
f (s1 |s1)
F(s1 |s1)

b′�(s1) + b(s1)
f (s1 |s1)
F(s |s1)

(αs1 + (1 − α)s1)
f (s1 |s1)
F(s1 |s1)

(Pb)′�(s1) = P(s1)(αs1 + (1 − α)s1)
f (s1 |s1)
F(s1 |s1)

b(0) = 0 P(0) ≤ 1 s1

(Pb)(s1) =
s1

∫
0

P(u )(αu + (1 − α)u ) f (u |u )
F(u |u ) du

(Pb)(s1) =
s1

∫
0

u P(u ) f (u |u )
F(u |u ) du

(Pb)(s1) =
s1

∫
0

u P′�(u )du

P(s) = exp[ −
1

∫
s

f (u |u )
F(u |u ) du ]

b(s1) =
s1

∫
0

u
f (u |u )
F(u |u ) exp[ −

s1

∫
u

f (v |v)
F(v |v) dv]du
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. 

Then, . We can conclude that the equilibrium strategy 

does not depend on the parameter. 

Let us check if it is really an equilibrium: 

 

 

If : 

, 

and, as signals are affiliated, . 

Then,  

 

 

If , then analogically we get that . That is why in order to 

maximize the payoff we choose . 

  

b(s1) =
P(s1)s1 −

s1
∫
0

P(u )du

P(s1)

b(s1) = s1 −

s1
∫
0

P(u )du

P(s1)

π′�1 = (αs1 + (1 − α)s − b(s))f (s |s1) − b′�(s)F(s |s1)

π′�1 = F(s |s1)(αs1 + (1 − α)s − b(s)) f (s |s1)
F(s |s1)

− b′�(s))

s1 > s

αs1 + (1 − α)s < αs1 + (1 − α)s1

f (s |s)
F(s |s) < f (s |s1)

F(s |s1)

π′�1 = F(s |s1)(αs1 + (1 − α)s − b(s)) f (s |s1)
F(s |s1)

− b′�(s))

> F(s |s1)(αs + (1 − α)s − b(s)) f (s |s)
F(s |s) − b′�(s)) = 0

s1 < s π′�1 < 0
s = s1
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4.3 All-pay auction 

We assume that players follow the same strictly increasing bidding strategy 

. The first bidder’s signal is  and the bid is . So, the expected 

payoff is: 

. 

The first-order condition: 

. 

Let us set  and rearrange: 

, 

. 

Let us check if it is really an equilibrium: 

. 

If , then . Also, , when . That is why the first 

bidder’s expected payoff is maximized only if  

From all above we can conclude that the equilibrium strategies in the 

discussed auctions with the proposed value functions do not depend on the 

parameter . 

 

b( * ) s1 b(s)

π1 =
s

∫
0

(αs1 + (1 − α)s2)f (s2 |s1)ds2 − b(s)

(αs1 + (1 − α)s)f (s |s1) − b′�(s) = 0

s = s1

b′�(s1) = (αs1 + (1 − α)s1)f (s1 |s1)

b(s1) =
s1

∫
0

s f (s |s1)ds

π′�1 = (αs1 + (1 − α)s)f (s |s1) − b′�(s)

s > s1 π′�1 < 0 π′�1 > 0 s < s1

s = s1

α
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C h a p t e r  5  

ASYMMETRIC AUCTIONS 

5.1 Second-Price Sealed-Bid Auction with asymmetric bidders 

Let us consider the auction where two bidders compete for a single object. 

Both of them receive private signals about the value of an object (  and ). 

Bidders are assumed to be risk-neutral. It is assumed that signals are 

independently and uniformly distributed on the [0,1]. 

The first bidder’s valuation depends not only on his own type, but the other 

bidder’s type as well. So, this is an auction with interdependent valuations. 

The second bidder has independent private values. 

 

 

We assume that the second bidder bids his signal, as it is known from the 

previous literature that for this player it is his weakly dominant strategy. Also, 

we assume that the first bidder follows the strictly increasing bidding strategy 

. Let us suppose for simplicity that this is the strategy of  the form 

 (where  is some positive constant). Now we can compute the first 

bidder’s expected payoff  if  he bids , given that the second bidder bid 

his signal. 

Then,  

, 

s1 s2

v1 = αs1 + (1 − α)s2

v2 = s2

b( * )
b(s) = βs β

b = βs

π1 =
b/β

∫
0

(αs1 + (1 − α)s2 − s2))ds2 = α
b/β

∫
0

(s1 − s2)ds2
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. 

The first-order condition: 

 

So, we see that the equilibrium strategy is . 

 

, 

 . 

As we know that the weakly dominant strategy for the second bidder is to bid 

his signal, we set . Then,  and it does not depend on the parameter 

. 

Let us consider the same auction with three bidders. The first and the second 

bidder have interdependent values, while the third bidder has private values: 

 

 

 

We use the same strategy as in the above case. So, we assume that the third 

bidder bids his signal and that the first and the second players follow the 

strictly increasing bidding strategy . We suppose again for simplicity the 

linear solution of the form  (where  is some positive constant) for 

the first and the second bidders. 

π1 = αbs1
β

− αb2

2β2

αb′�s1
β

− αb′�b
β2 = 0

b = βs1

π2 =
s

∫
0

(s2 − βs1)ds1 = s2s − βs2

2

π′�2 = s2 − βs

s = s2 β = 1
α

v1 = αs1 + (1 − α)s2

v2 = αs2 + (1 − α)s1

v3 = s3

b ( * )

b (s) = βs β
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So, the expected payoff of the first player if he bids some , given that the 

third player bids his signal and the second player bids , is: 

, 

where  is for the case when the second bidder’s 

bid is the second highest bid and  is for the case 

when the third bidder’s bid is the second highest bid. 

After integrating we get: 

. 

The first-order condition: 

, 

. 

Notice that if  we consider , then we obtain the auction with pure private 

values and the equilibrium bidding strategy above will be equal to . It is 

consistent with the theory, so the computed equilibrium strategy is correct. 

As the first and the second players are symmetric, we can calculate  as: 

b

b(s2) = βs2

π1 =
b/β

∫
0

(
βs2

∫
0

(αs1 + (1 − α)s2 − βs2)ds3 +
b

∫
βs2

(αs1 + (1 − α)s2 − s3)ds3)ds2

βs2

∫
0

(αs1 + (1 − α)s2 − βs2)ds3

b

∫
βs2

(αs1 + (1 − α)s2 − s3)ds3

π1 = αb2s1
β

− b3

3β2 + (1 − α)b3

2β2 − b3

2β
+ b3

6β

2αs1bb′ �
β

− b2b′�
β2 + 3(1 − α)b2b′�

2β2 − 3b2b′�
2β

+ b2b′�
2β

= 0

b = 2αβs1
α + 2β − 1

α = 1
b = s1

β
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, 

. 

We can conclude that the parameter  has positive effect on the bidding 

strategies. 

Our next step is to investigate how the parameter  influences the seller’s 

revenue. 

 

5.2 First-Price Sealed-Bid Auction with asymmetric bidders 

Let us consider the auction where two bidders compete for a single object. 

Both of them receive private signals about the value of an object (  and ). 

Bidders are assumed to be risk-neutral. It is assumed that signals are 

independently and uniformly distributed on the [0,1]. 

The first bidder’s valuation depends not only on his own type, but the other 

bidder’s type as well. So, this is an auction with interdependent valuations. 

The second bidder has independent private values 

 

 

We assume that the second bidder bids his signal, as it is known from the 

previous literature that for the player it is optimally to bid his/her signal under 

the case of  the independent private values. Also, we assume that the first player 

follows the strictly increasing bidding strategy . 

β = 2αβ
α + 2β − 1

β = 1
2 α + 1

2

α

α

s1 s2

v1 = αs1 + (1 − α)s2

v2 = s2

b( * )
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Let us suppose for simplicity the linear solution of  the form  (where 

 is some positive constant) for the first bidder. Then, we build the second 

bidder’s expected payoff  as the product of  the probability of  his winning and 

his expected payoff  in that case: 

. 

Substituting  with  and computing the probability and the expected value: 

. 

The first-order condition: 

. 

So, given that the first bidder strategy is linear, the optimal strategy for the 

second bidder is . 

Now let us find the optimal strategy of  the first bidder, given that the second 

bidder bids half  of  his valuation 

We build the first bidder’s expected payoff  as the product of  the probability of  

his winning and his expected payoff  in that case: 

. 

Substituting , with  and , respectively, we got: 

. 

b(s) = βs

β

π2 = P(b2 > b1)(E [v2 |s2, b2 > b1] − b2)

b1 βs1

π2 = b2
β

(s2 − b2)

b′�2
β

(s2 − 2b2) = 0

b2 = 1
2 s2

π1 = P(b1 > b2)(E [v1 |s1, b1 > b2] − b1)

b2 v1
1
2 s2 αs1 + (1 − α)s2

π1 = P(b1 > 1
2 s2)(E [αs1 + (1 − α)s2 |s1, b1 > 1

2 s2] − b1)
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Rearranging and computing the expected value of   and the probability: 

. 

The first-order condition with respect to : 

. 

The solution is . 

So, we can conclude that the equilibrium bidding strategies in that auction do 

not depend on . Also, that means the expected revenue of  the seller does not 

depend on it. 

Let us consider the auction where 3 bidders compete for a single object. All 

of them receive private signals about the value of an object ( ,  and ). 

Bidders are assumed to be risk-neutral. It is assumed that signals are 

independently and uniformly distributed on the [0,1]. 

The first and the second bidders have interdependent values, while the third 

bidder has private values: 

 

  

 

We assume that the first and the second players follow the same strictly 

increasing bidding strategy , as their value functions are symmetric. 

Also, we suppose for simplicity that their strategy is of the form  

(where  is some positive constant and  is signal, ). 

s2

π1 = 2αb1(s1 − b1)

b1

2αb′�1(s1 − 2b1) = 0

b1 = 1
2 s1

α

s1 s2 s3

v1 = αs1 + (1 − α)s2

v3 = s3

b( * )
bi(si) = βsi

β si i = 1,2

v2 = αs2 + (1 − α)s1
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Let us build the third bidder’s expected payoff  as the product of  the probability 

of  his winning and his expected payoff  in that case: 

. 

Substituting ,  with and , respectively, and computing the expected 

value, we got: 

, 

. 

After calculating the probabilities and opening the brackets, we obtained the 

final expression for the third bidder’s payoff: 

. 

The first-order condition with respect to : 

. 

The solution is . 

It is interesting to notice that the obtained above bidding strategy coincides 

with the one in the symmetric first-price sealed-bid auction with pure private 

values for three bidders. The general formula for the strategy is , 

where n is the number of  bidders. 

π3 = P(b3 > b1, b2)(E [v3 |s3, b3 > b1, b2] − b3)

b1 b2 βs1 βs2

π3 = P(b3 > βs1, βs2)(s3 − b3)

π3 = P( b3
β

> s1,
b3
β

> s2)(s3 − b3)

π3 = b2
3 s3
β2 − b3

3
β2

b3

2b′�3b3s3
β2 − 3b2

3 b′�3
β2 = 0

b3 = 2
3 s3

bi = n − 1
n

si
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Our next step is to find the first bidder’s response assuming that the second 

player follows a linear strategy  (where  is some positive 

constant) and that the third player uses the strategy  

Let us build the first bidder’s expected payoff  as the product of  the probability 

of  his winning and his expected payoff  in that case: 

 

Substituting , , with ,  and , respectively, we 

got: 

. 

Rearranging and computing the expected value of  : 

 

 

. 

The first-order condition: 

 

The solution is . 

b2(s2) = βs2 β

b3(s3) = 2
3 s3

π1 = P(b1 > b2, b3)(E [v1 |s1, b1 > b2, b3] − b1)

b2 b3 v1 βs2
2
3 s3 αs1 + (1 − α)s2

π1 = P(b1 > βs2, 2
3 s3)(E [αs1 + (1 − α)s2 |s1, b1 > βs2] − b1)

s2

π1 = P( b1
β

> s2, 3
2 b1 > s3)(αs1 + (1 − α)E [s2 |

b1
β

> s2] − b1)

= 3b2
1

2β
(αs1 + (1 − α)E [s2 |

b1
β

> s2] − b1)

= 3b2
1

2β
(αs1 + (1 − α) b1

2β
− b1)

b′�1((
3b1
β

(αs1 + (1 − α) b1
2β

− b1) + 3b2
1

2β
( 1 − α

2β
− 1)) = 0

b1 = 4βas1
6β + 3a − 3
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As the first and the second bidders had symmetric value functions, the second 

bidder’s strategy is assumed to be the same. 

Notice that if  we consider , then we obtain the symmetric auction with 

pure private values and the equilibrium bidding strategy above will be equal to 

. It is consistent with the theory, so the computed equilibrium strategy 

is correct. 

As the first and the second player are symmetric, we can calculate  as: 

, 

. 

We can conclude that the parameter  has positive effect on the bidding 

strategies. 

As in the previous case, our next step is to investigate how the parameter  

will influence the seller’s revenue. 

 

5.3 All-pay Auction with asymmetric bidders 

Let us consider the auction where 3 bidders compete for a single object. All 

of them receive private signals about the value of an object ( ,  and ). 

Bidders are assumed to be risk-neutral. It is assumed that signals are 

independently and uniformly distributed on the [0,1]. 

The first and the second bidders have interdependent values, while the third 

bidder has private values: 

α = 1

b1 = 2
3 s1

β

β = 4βa
6β + 3a − 3

β = 1
6 α + 1

2

α

α

s1 s2 s3
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We assume that the first and the second players follow the same strictly 

increasing bidding strategy , as their value functions are symmetric. 

Also, we suppose for simplicity that their strategy is of the form  

(where  is some positive constant and  is signal, ). As in the 

symmetric all-pay auction with pure private values, uniformly distributed 

signals and n bidders the equilibrium bidding strategy is , 

that is why we assume that the bidding strategies will contain the cube of the 

player’s signal in our case also. 

Let us build the third bidder’s expected payoff  as the product of  the probability 

of  his winning and his expected payoff  in that case: 

. 

Substituting , , with ,  and , respectively, and computing the 

expected value, we got: 

. 

After calculating the probabilities, we obtained the final expression for the third 

bidder’s payoff: 

. 

v1 = αs1 + (1 − α)s2

v2 = αs2 + (1 − α)s1

v3 = s3

b( * )
bi(si) = βs3

i

β si i = 1,2

bi = sn −
s

∫
0

s′�n −1ds′�

π3 = P(b3 > b1, b2)(E [v3 |s3, b3 > b1, b2] − b3) − (1 − P(b3 > b1, b2))b3

b1 b2 v3 βs3
1 βs3

2 s3

π3 = P(b3 > βs3
1 , βs3

2 )(s3 − b3) − (1 − P(b3 > βs3
1 , βs3

2 )b3

π3 = 3 b2
3

β2 s3 − b3
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The first-order condition: 

. 

The solution is . 

Our next step is to find the first bidder’s response assuming that the second 

player follows a strategy  (where  is some positive constant) and 

that the third player uses the strategy . 

Let us build the first bidder’s expected payoff  as the product of  the probability 

of  his winning and his expected payoff  in that case: 

, 

 

After calculating the probabilities, we obtained the final expression for the first 

bidder’s payoff: 

. 

Taking the first-order conditions we obtain: 

. 

b′�3(
2s3
3β2 ( b2

3
β2 )− 2

3 b3 − 1) = 0

b3 = 8
27β2 s3

3

b2(s2) = βs3
2 β

b3(s3) = 8
27β2 s3

3

π1 = P(b1 > b2, b3)(E [v1 |s1, b1 > b2, b3] − b1) − (1 − P(b1 > b2, b3))b1

π1 = P(b1 > βs3
2 , 8

27β2 s3
3 )(E [αs1 + (1 − α)s2 |s1, b1 > βs3

2] − b1) − (1 − P(b1 > βs3
2 , 8

27β2 s3
3 ))b1

π1 = 3 27b2
1 β

8 (αs1 + (1 − α)
2

3 b1
β

− b1)

(
β( 1

2 (1 − α) 3 b1
β + αs1 − b1

2(βb1)
2
3

+ 3
2

3 βb1( 1 − α

6β( b1
β ) 2

3
− 1))b′�1 = 0
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It can be seen from above that there is a relationship between ,  and . 

However, the equation cannot be solved analytically. That is why, this case we 

leave as an opportunity for the future researches. 

 

5.4 Revenue Comparison 

We calculated asymmetric equilibrium strategies for two auctions. In this 

chapter we want calculate and compare seller’s expected revenues for those 

models. Let us start from the second-price sealed bid auction with 3 asymmetric 

bidders. 

At the beginning, we have to calculate the distribution of  the price paid to the 

seller by the winner as the distribution of  the second-highest bid. 

That price is districted on the set { , , }. 

So, there are two possible events: 

1) Two of  { , , } are less than price (we will 

dente it as ) and one is larger than ; 

2) All elements of  { , , } are equal or less than 

. 

The resulted distribution function is  for 

any . 

α β b1

( 1
2 a + 1

2 )s1 ( 1
2 a + 1

2 )s2 s3

( 1
2 a + 1

2 )s1 ( 1
2 a + 1

2 )s2 s3

p p

( 1
2 a + 1

2 )s1 ( 1
2 a + 1

2 )s2 s3

p

F(p) =
p2 + 2( 1

2 a + 1
2 )p2 − 2p3

( 1
2 a + 1

2 )2

p ≤ 1
2 a + 1

2
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The expected revenue of  the seller is the expected value of  the price that is 

going to be paid by the winner of  the auction: 

. 

 

. 

Now let us consider the first-price sealed bid auction with 3 asymmetric 

bidders. 

We need to calculate the distribution of  the price paid to the seller by the winner 

as the distribution of  the highest bid. 

That price is districted on the set { , , }. 

So, the event that we are looking for occurs when all elements of  the set {

, , } are equal or less than . 

The resulted distribution function is  for any 

. 

The expected revenue of  the seller is the expected value of  the price that is 

going to be paid by the winner of  the auction: 

E(Reven ue) =

1
2 a+ 1

2

∫
0

pdF(p)

E(Reven ue) =

1
2 a+ 1

2

∫
0

1
( 1

2 a + 1
2 )2

(2p2 + 4( 1
2 a + 1

2 )p2 − 6p3)dp

= − 1
36 a2 + 10

36 a + 11
36

( 1
6 a + 1

2 )s1 ( 1
6 a + 1

2 )s2
2
3 s3

( 1
6 a + 1

2 )s1 ( 1
6 a + 1

2 )s2
2
3 s3 p

F(p) = 3p3

2( 1
6 a + 1

2 )2

p ≤ 1
6 a + 1

2
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, 

. 

 

The expected revenue of  the seller in the second-price sealed-bid auction is 

represented by the blue line and the expected revenue of  the seller in the first-

price sealed-bid auction is represented by the red line in Fig. 1.  

 

 

Figure 1. The expected revenues of  the seller 

 

We can conclude that the larger is , the larger is expected revenue of  the seller.   

Recalling the meaning of  the parameter, the larger is the weight assigned by the 

E(Reven ue) =

1
6 a+ 1

2

∫
0

pdF(p)

E(Reven ue) =

1
6 a+ 1

2

∫
0

9p3

2( 1
6 a + 1

2 )2
dp = 1

32 α2 + 6
32 α + 9

32

α
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bidder to his own signal (the closer the value functions are to independent pure 

private value form), the more the auctioneer will earn. Also, we can see that 

under proposed auction models, conducting the second-price sealed-bid 

auction is more profitable for the auctioneer than conducting the first-price 

sealed-bid auction. 
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C h a p t e r  6  

CONCLUSIONS 

The traditional auction theory always simplifies the reality. Classical auction 

models are designed under a big number of  assumptions as symmetry of  the 

bidders, identically and independently disturbed value signals, risk neutrality of  

the bidders, pure common or pure private valuations. However, these models 

do not have a lot in common with the real ones. 

In this thesis we studied classical auctions with interdependent value functions 

with the parameter. We considered models with 2 symmetric bidders and 

correlated signals (the first- and the second-price sealed-bid auctions and all-

pay auction) and with 2 or 3 asymmetric bidders and independent signals (the 

first- and the second-price sealed-bid auctions and all-pay auction). 

We observed that in the symmetric auctions the value of  the parameter 

presented in the value functions does not have any influence on the equilibrium 

bidding strategies, as in the maximization of  the player’s payoff  it was cancelled 

out. All of  that, in turn, means that the seller’s revenue does not depend on the 

parameter either. It is possible to tell that under proposed value functions the 

studied models will “converge” to the case of  the pure private values. The same 

result has been obtained for the first- and the second-price asymmetric auctions 

with two players. We did not obtain the optimal strategies in the asymmetric 

all-pay auction as the maximization of the first bidder’s payoff cannot be solved 

analytically. We leave this case for the future studying. 

However, in asymmetric auctions with three players the parameter has a 

positive effect on the bidding strategies and the seller’s revenue. So, the larger 

is the weight assigned by the bidder to his own signal, the larger is submitted 

bid and the seller’s expected revenue. 
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Also, comparing the first- and the second-price sealed-bid auctions, it is more 

profitable for sellers to choose the second-price auction, as under any value of  

the parameter, that auction brings greater expected revenue than the first-price 

auction. 
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