Catching Value Added Tax evaders in Delhi using Machine Learning

A Prajit Mahajan (UC Berkeley)
Shekhar Mittal (UCLA)
Ofir Reich (Data Scientist, CEGA)
Tackle corruption with data

Using administrative data to pinpoint corruption

Not only research - enforcement

A general approach

This talk - tax evasion, Delhi
The problem - Value Added Tax evasion via bogus firms

National Capital Territory of Delhi

Bogus firms exist only on paper, and make money by falsely reporting transactions with genuine firms (more on this soon)

Media reports estimate annual revenue loss around $300 Million (₹2000 crore)

Hard to locate offenders, limited labor to inspect. When found their license revoked.

We show a way of better targeting inspections and finding bogus firms, and (the research design to) test the impact of finding those bogus firms on their trading partners and on tax revenue
The project in a nutshell

Data: Value Added Tax (VAT) **returns** of all registered private firms
Who sold to whom, for how much, what tax rate? Quarterly.

Automatically process the data and identify firms suspected of being bogus

Target them for physical inspections

Machine Learning Approach: Past bogus firms -> what is suspicious behavior -> similar behavior in present -> target
How VAT works

Firm A: $60 (copper)
Firm C: $80 (circuits)
Firm D: $90 (smartphone)
Consumer
How VAT works

Firm A (copper)
Firm C (circuits)
Firm D (smartphone)

Consumer

Pays tax on $60
Pays tax on $80
Pays tax on $90

$60 $80 $90

$60 + $20 + $10 = $90

Government receives tax on $90 value added
How VAT works

Firm A
Pays tax on $60

Firm C
Pays tax on 80-60=$20

Firm D
Pays tax on 90-80=$10

Consumer

Government receives tax on $90 value added

No double reporting
How VAT evasion works

Pays tax on $60
$60-41=$19

Pays tax on $80-60=$20

Pays tax on $90-80=$10

Government receives tax on $40 less value added

No double reporting
How VAT evasion works

Firm A pays tax on $60, resulting in $60 - $41 = $19.

Firm C pays tax on $80 - $60 = $20.

Bogus Firm B pays tax on $90 - $80 = $10, receiving kickbacks of $41.

Consumer pays $90.

Firm D pays tax on $90 - $80 = $10.

The government receives tax on $40 less value added. Surplus is divided between offenders.
Is it a big problem?

Modal bogus firm pays taxes of $\text{\text₹10}^7 = \text{$150,000}$ per quarter. There are hundreds of firms caught in the past.
How the current inspection system works

Irregular, opaque physical inspections to find bogus firms

Targeting: some heuristics about what is suspicious behavior (not validated with data)

No organized recording of who was inspected, when and why, or of success rate

Only record canceled firms (whose license was revoked), not genuine firms
Our approach: rely on data

Past bogus firms -> **what is suspicious behavior** -> **similar behavior in present** -> **target**

Bogus firms tend to have low profit margins

... and trading partners with low profit margins

![Graph showing probability of being bogus over deciles of ratio of money deposited to turnover.](image1)

![Graph showing probability of being bogus over deciles of ratio of VAT deposited to turnover.](image2)
Our approach - Machine Learning

Past bogus firms -> **what is suspicious behavior** -> similar behavior in present -> target

- Network feature: VAT deposited ratio by 2B firms
- Sales made to unregistered firms
- Network feature: Pagerank (2A)
Our approach - Machine Learning

Past bogus firms -> what is suspicious behavior -> similar behavior in present -> target
Our approach

Past bogus firms -> what is suspicious behavior -> **similar behavior in present** -> target

Target suspicious firms (by the model prediction) for inspection by the tax authority

Inspection results -> feed back into the system, improve future prediction

Evaluate impact

Added benefit: objective, fair targeting of inspections
Results

Of the top 400 suspicious firms our model finds, we expect at least 75% to be bogus.
Part I: Machine Learning
Non-Standard Machine Learning Scenario

Base-rate unknown (class distribution in the population)
Stratify inspections on model score

One-sided labels: only firms that were (non-randomly) inspected and found bogus
- Start with predicting (inspected & bogus) vs. the world
- Probabilistic labels (via weighting)
- Use cross-validation to predict for each unknown firm

Multiple time-periods for each firm
- Train & predict for individual time period, perform aggregation. “Convolutional” approach.

Online Machine Learning, chosen targeted labeling
- Improve predictions with each round of targeted inspections (target whom?)
- We can choose which firms to target

Network Dataset & Features (danger of leakage)
All firms $(N_{\text{firms}} = 315,000)$

- Inspected firms $N_{\text{inspected}} < 10,000$
 - Inspected & bogus $N_{\text{inspected \& bogus}} = 538$
 - Label: “bogus” $Pr(\text{bogus}) = 1$
 - Inspected & legit $N_{\text{inspected \& legit}} = ?$
 - Label: unknown $Pr(\text{bogus}) < 1$
- Not Inspected

Cause of selective labels

Cause of one-sided labels

Predict

train
One-sided labels - solution

Start with predicting (inspected & bogus) vs. the world
Use cross-validation to predict for each unknown firm (when it is in the validation fold)
Evaluate performance
Sophisticated features help prediction
Point-in-time simulation

How to know not how well we do, but how well we would have done compared to the status quo?

Roll back observations to the state of knowledge at time period T:
- Drop all observations with time $t > T$.
- Firms canceled before/on time T are labeled “bogus”
- Firms canceled after time T (and those never canceled) are labeled “legit”

Run our training and prediction process on firms still operating at time T.
 - How many do we catch that later turned out to be bogus?
 - How many months of operations / lost revenue would we save? (displacement?)
Point-in-time simulation

Roll back observations to the state of knowledge at time period T

*Potential revenue saved
Part II: Economics
How VAT evasion works

Firm A

$60

Pays tax on

$60

60-41=$19

Firm C

$80

Pays tax on

80-60=$20

Firm D

$90

Pays tax on

90-80=$10

Consumer

$50

Pays tax on

41-40=$1

Bogus Firm B

kickbacks

payment

Government receives tax on $40 less value added. Surplus is divided between offenders.
Economic research plans

- Bogus Firm B
- Bogus Firm B2
- Bogus Firm B3
- Firm E
- Firm A
- Firm D
- Consumer

Relationships:
- Bogus Firm B to Firm A: kickbacks
- Bogus Firm B2 to Firm A: kickbacks
- Bogus Firm B3 to Firm A: kickbacks
- Firm E to Firm A: payment
- Firm A to Firm D: payment
- Firm D to Consumer: payment
Economic research plans - recommendations

Firm A

Firm D

Consumer

Bogus Firm B

Bogus Firm B2

Bogus Firm B3

Firm E

Not suspicious
We have random variation in how many bogus firms that firm A interacts with are discovered.
We have random variation in how many bogus firms that firm A interacts with are discovered.
Research Questions - relevant to corruption

Tax revenue collected (if not, where does it break down?), cost-benefit

Deterrence or substitution? Firm A & Firm D

Long-term effects on firms:
 Deterrence effect of enforcement
 Spillovers to network, information propagation

Random variation in tax burden - deadweight loss, price effects, revenue
Recap

Use the universe of VAT returns in Delhi to find tax evaders ("bogus firms")

Machine Learning approach:
Past bogus firms -> what is suspicious behavior -> similar behavior in present -> target

Show high accuracy, millions of $ in potential revenue
E-auditing - a general anti-corruption approach

E-auditing:

Digital “paper trail” + ML => monitoring of service provision

Teacher attendance - mobile phone call records
Health workers give vaccines - electronic immunization cards/app
Welfare payments delivered - Aadhaar records
Collusion in public procurement - public records of auctions

...

Corruption + digital data = potential for e-auditing
(Past bogus firms -> what is suspicious behavior -> similar behavior in present -> target)
Thanks!

e.scribbler@gmail.com