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by Oleksii Romanko 

Thesis Supervisor:   Professor Olesia Verchenko 

 

Classical Black – Scholes model, however still widely used in the financial 

circles, is known for its inconsistencies in modeling actual option markets. 

Besides assumption of the normal distribution of the underlying assets and 

perfect liquidity of the market, classical Black-Scholes provides poor modeling 

of  in-the-money and out-of-the money the options, as well as does not 

account for the term structure of the options. Current work concentrates on 

the Fractional Black-Scholes option pricing model, that relaxes classical 

assumptions and provides theoretically valid modeling of volatility smile and 

term structure of options.  Following the first empirical work, concerning 

application of the model to the actual options data, appeared in Mare et al 

(2017),  current work provides further investigation of the Fractional Black-

Scholes model, as well as it’s comparison with classical Black - Scholes and 

Stochastic Alpha Betha Rho models. The estimation of FBS model  

parameters are closely studied, as well as statistical tests to prove the 

significance of the model estimated. Model is fitted to the S&P500 index 

options data and the performance is compared with classical BS model and 

SABR model in terms of root mean squared error and mean average 

percentage error. 

Results give an evidence that fractional model have better accuracy then 

classical Black-Scholes model in terms of prediction error, and is comparable 



 
 

to the SABR model.  Among other advantages of FBS modes, is strong 

heuristical approach to the model parameters, which allows to interpret them 

in order to understand the market behavior. Solid mathematical background 

behind FBS model allows researcher to execute statistical testing of the model 

validity. Closed-form pricing formula of Fractional Black-Sholes model 

provides simplicity of estimation procedure. 
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GLOSSARY 

EMH. Effective Market Hypothesis, theory about efficient financial markets.  

FMH. Fractal Market Hypothesis, theory explaining inefficiencies observed 

on the financial markets. 

SABR. Stochastic alpha betha rho option pricing model. 

BS. Black-Scholes option pricing model. 

FBS. Fractional Black-Scholes option model. 

MAE. Mean absolute percentage error, used to measure estimation or 

prediction error. 

RMSE. Root mean squared error, used to measure estimation or prediction 

error. 

S&P500. Standart and Poor index representing aggregate index of top 500 

companies in US market. 

 



 

C h a p t e r  1  

INTRODUCTION 

 

The first theoretical model of option prices was developed by  Black, Merton 

and Scholes (1973). The Black –Scholes option pricing model is considered to 

be classical benchmark model for options even in the modern financial world.  

Though relying on theoretical assumptions of normality, perfect liquidity, 

market efficiency and fixed volatility, it fails to predict all price fluctuations on 

the option markets, especially in some edge cases, when either time to 

maturity or strike price is low (Ray 2012).  

There are many different option pricing models, which were developed for 

the purpose of more precise estimation of options fair price: local volatility 

models (where price is predicted for every small group of options with 

specific characteristics) and stochastic volatility models (where volatility of 

option is assumed to be stochastically formed).  

This thesis is concentrated on the new model for option pricing, called 

Fractional Black-Scholes model, which belongs to a class of stochastic 

volatility models. The uniqueness of the model is explained by complicated 

fractional mathematics at the model foundation, complete approach “from 

scratch”, which means that the model functional form is derived from new 

assumptions on the underlying stochastic process. The privilege of the model 

is a strong heuristical explanation of the new fractional parameter introduced 

into the model, which helps to describe the behavior of option market. Also, 

unlike many other stochastic volatility models, the fractional model provide 

natural extension to the functional form of the classical Black-Scholes model. 

The research question of the current work is whether the generalized form of 

the classical BS model show better performance in options price prediction in 

comparison to another modernizations of the BS model. 
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The research is aimed to explore the validity of new predictive models for 

determination of options prices, as well as compare model performance with 

classical and modern option pricing models. The results of this research will 

be useful for the hedge fund companies and private investors that highly rely 

on the quality of financial models they make use. The methodology described 

will be also useful for general modeling of options market structure, which 

will provide qualitative understanding of the underlying processes driving the 

options prices.                                                                       

For comparison with the Fractal Black-Scholes model, classical Black-Scholes 

as well as Stochastic Alpha, Betha, Rho (SABR) models are used. SABR is 

also a further modification of the classical Black-Scholes model, with a 

different form of the underlying stochastic process. Underlying geometric 

Brownian motion process is modified to have two stochastic state variables 

(for volatility and price motions), which have a correlation parameter between 

each other (the concept that is similar to fractional Brownian motion). 

Fractional mathematics started to be leveraged for modeling purposes from 

the 1980. But vast amount of initial researches was devoted to the exploratory 

analysis of fractional processes, their usability and application to economics 

and finance, analysis of economic indices and processes that can be modeled 

using fractals. However, due to complicated mathematical foundation, there 

were lack of works that were transforming abstract mathematical apparatus to 

the research instrument. In particular, some of works discovered 

inconsistency of fractal models for financial modeling purposes (Rogers 

1997). After 2000’s, updated mathematical apparatus (Rogers et al 2000) 

allowed to confute previous misleading result. To summarize, almost 30 years 

after Mandelbrot (1987) explained possible benefits of using fractional models 

in economics, those models were applied to the options markets (Maré et al 

2017).  

The fractional models, previously used for the exploratory purposes and time 

series forecasting models, proved to add more understanding of the nature of 
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economic processes. The fractal approach is closely connected with the 

modern field of Economics – Behavioral Economics. The Fractal Market 

Hypothesis (Mandelbrot 1987) provided explanation of various market 

inefficiencies, providing the statement, that only balance of long-term and 

short-term players on the market can insure the market efficiency. Possible 

deviation from the balance is displayed in the so-called Hurst exponent – or 

fractal parameter of the economic process.  

Option pricing model, developed under assumption of the fractal nature of 

the financial process, allows to model inefficient markets, where distribution 

of market returns is not normal. 

The contribution of the thesis is application of Fractal Black-Scholes model to 

classical European option markets (S&P500 options), comparison of 

emerging fractal modeling to another classical and modern option pricing 

approaches. Results show, that fractal Black-Scholes model have accuracy, 

comparable to another modern option pricing models, but provide more 

interpretability. 

 The work is structured in the following way: Chapter 2 presents the literature 

review on the topic option pricing models and fractional modeling; in Chapter 

3 there is a methodology applied in current research, Chapter 4 contains the 

information about the data used. The estimation results are presented in 

Chapter 5, while Chapter 6 presents the discussion of obtained results and 

possible policy implications. 
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C h a p t e r  2  

LITERATURE REVIEW 

 

Right up to the late 80s, financial modeling and prediction techniques, based 

on the mathematical models and programmed trading agents, became 

increasingly popular due to the rapid development of computational facilities, 

as well as the increased rate and volume of global financial trade.  

Following the classical economic theories, in particular the Efficient Market 

Hypothesis (EMH), Black and Scholes (1973) developed a model to predict 

prices of options. This model is still used in modern financial modeling of 

options and is considered as a classical model for options prices 

determination.  

 

2.1. Drawbacks of the Black-Scholes model 

As generalized by Ray (2012) the Black-Scholes model was based on some 

fundamental assumptions and restrictions put on the option markets. Among 

them are: 

 Efficient markets: any inefficiency in the market will be transferred 

to the profit of some trading agent, in such a way bringing market back to 

the efficient state. 

 Perfect liquidity: there is no considerable lags or obstacles for agents 

on the markets to implement their decisions. Perfect liquidity means that it 

is possible to buy or sell any amount of option or its fractions at any given 

time. 
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 Rational agents: agents on the financial market are assumed to be 

rational profit-maximizers, who act in the best possible way to achieve their 

goal. 

 Normal distribution:  prices of stocks are distributed according to 

the Gaussian distribution, which is considered as a basic distribution 

assumed by most models. 

 Constant volatility: the volatility of the underlying asset follows the 

geometrical Brownian motion, with classical (since Newton times) possible 

growth of volatility as square root of time. 

 Market homogeneity: perfectly efficient markets consist of agents 

with the same objective goal (maximize profits), same level of rationality, 

and as a result, same behavior.  

Significant failures of the classical model were discovered: failure to explain 

most of price fluctuations (Teneng 2011), especially those at close to maturity 

and low strike prices (Hagan 2002), unrealism of constant volatility assumed 

and therefore no volatility smile characteristic, simplified assumption of 

underlying Markov process (Hakan 2005). Among the most crucial 

assumptions of the model was perfect liquidity and efficiency of the markets. 

Therefore, modeling approaches shifted from the classical view on financial 

modeling, to new methodologies and techniques. 

 

2.2. Alternative modeling approaches and SABR model 

In particular, with new possibilities for using heavily computational models, 

Monte-Carlo option pricing simulation models (Mills et al 1992) and binomial 

approximation model (Cox et al 1976) emerged, which allowed to account for 

stochastic volatility.  

Work by Bakshi et al (2003) examined an empirical performance, comparing 

the classical model in comparison to more recent local volatility models 
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(where volatility is assumed to be locally constant) and stochastic volatility 

models  (where volatility is modeled as a stochastic process).  

Considerable drawbacks of local volatility models were claimed by Hagan et al 

(2002), especially in illiquid markets: “dynamic behavior of smiles and skews 

predicted by local volatility models is exactly opposite to the behavior 

observed in the marketplace”, which means that models do not correctly 

display a dependence between implied volatility and strike price (which 

resembles smile form when graphed). The nature of the problem, according 

to authors, is the underlying assumption of Markow process as the basis for 

the price evolution. Inappropriate behavior of the models is evidence, that 

Markovian processes can not be used for modeling of some options. 

According to the authors, there are three ways to proceed – either assume 

non Markov stochastic  process as the basis for price change identification, or 

try to keep it Markovian, but use some different process instead of Brownian. 

And the third approach is to develop a new model based on two – factor 

approach. The last one was chosen for the SABR model – instead of one 

equation connecting price with volatility and time, authors proceeded with the 

system of two equations, the first one described the behavior of price as the 

Brownian motion, while the second described volatility as an independent 

Brownian process, but correlated with the first one. Following new initial 

assumptions, a new model describing the implied volatility was derived. The 

model  called Stochastic Alpha Beta Rho option pricing model, was chosen by 

the author of the thesis to be a comparison model in the family of modern 

approaches. SABR model introduces a functional form alternative from  other 

modern models (for example, Heston model (1993) ), which provides some 

more beneficial generalizations like a lognormal distribution, no mean 

reversion and scale variance (Alexander and Nogueira 2007). 

Hagan (2002) stated the importance of the SABR approach for modeling of 

the options. Unlike another models (binomial model of Cox, Ross and 

Rubinstein (1976), Heston (1993) stochastic volatility model), which provide 
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the alternative approach and as a result, somewhat different functional form 

of relationship between exogenous parameters and option price, the model 

provides a substantial improvement to the classical BS model. The aim of 

SABR model is to an provide implied volatility parameter, which replaces a 

corresponding parameter in the original BS formula. A simple procedure of 

fetching the model parameters consists of three procedures: estimation of the 

exponent for the forward rate, obtained by simple OLS; estimation of the 

initial variance, volatility of variance and correlation between two Brownian 

processes assumed in the model, one for forward rate, the other one – for the 

variance of volatility. Using fetched parameters, volatility smile and skew are 

obtained to illustrate behavior of the process modeled. Another important 

characteristics of the SABR model are Greeks, which characterizes the 

modeled option. Parameter Vega describes the sensitivity of the option price 

to volatility. Parameter Delta explains how the option price reacts to the strike 

price.  

West(2004) provided the technical details about the applied usage of SABR 

model, numerical algorithms needed for the parameters estimation are 

explained – log-log estimation procedure for estimating the price evolution 

parameter, Tartaglia method for solving a third-order equation to obtain 

implied volatility from at-the-money volatility, Nelder-Mead simplex search 

algorithm and Newton – Rhapson solver for estimating the last two 

parameters -  correlation between stochastic processes and volatility variance.   

The author explains that SABR model, though constructed for American 

options, can be greatly used for European options studied in current thesis, 

because it is suboptimal to withdraw the money before the end of traded 

period.  
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2.3. Fractional approach to modeling and Fractional Black-Scholes model 

As emphasized by Mandelbrot (1987), wrong assumptions about constant 

volatility and underlying processes in classical models have more conceptual 

than technical background. And one crucial assumption is that financial 

markets are efficient.  

The theory stated the evidence about faults of the classical financial theory, 

which undervalued the effect of rare events. According to the classical view 

that tried to fit the distribution of stock prices to the normal “bell-shaped” 

curve (Gaussian curve), there are rare events placed on the tails of distribution 

and are not accounted for, because no financial model or stock portfolio can 

elucidate for 100% of all risks or finance shocks. Mandelbrot discovered that 

actually, distributions of many stock prices do not fit well the normal 

distribution. Moreover, a lot of significant and astonishing changes on 

markets have considerable magnitude and low possibility to occur. As a result, 

most of financial crashes happened because of events placed at the tails of 

distribution. The idea of fat tails, an important influence of the rare events on 

the economy, repeatable occurrences of the rare events laid the foundation of 

new theory, which was called the “Fractal Market Hypothesis”. This theory 

relaxed some assumptions of the classical theory: 

 Non-efficient markets: there is a certain possibility for the financial 

market to become inefficient, for example, in the case of overheated 

expectations by agents, interacting on the market. There is not enough 

information symmetry, described by the EMH, and moreover, not all public 

information is accessible by financial agents, as well as private information 

can be revealed by accident. As a result, there is some possibility for non-

realized profit opportunities that keep market working inefficiently.  

 Illiquidity: markets cannot be perfectly liquid, because of political, 

financial, physical constraints, design of stocks (for example it is rarely 

possible to sell any fraction of asset). Because perfect liquidity assumes 
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perfectly competitive markets, and the last phenomena cannot be observed 

in reality, perfect liquidity cannot be observed as well.    

 Irrational agents: because the agents interacting on the markets are 

still mostly humans, they are subject to panic, emotions and sometimes 

irrational behavior. Their decisions are influenced by subjective goals and 

utilities, which do not always result in rational decisions from the point of 

view of the economy. 

 Non normal distribution: a lot of price distributions are better 

explained by generalized version of normal distribution: distribution of 

Pareto-Levi. Gaussian classical distribution is just a particular example of a 

more general law, which can be perfectly fitted to the skewed distributions 

with long tails. 

 Non-constant volatility: the assumption of constant volatility cannot 

be valid, especially in the long run. Volatility can change because of 

irrational behavior on the markets, changed the market structure or some 

unpredicted events. 

 Heterogeneity of the markets: from the point of view of the 

fractional theory, financial markets can be stable and efficient, if there are 

different types of agents present on the market: short-term investors and 

long-term investors.  As the decisions made by economic agents are highly 

dependent on their financial horizon, markets are stabilized, if actions of 

short-horizon agents are compensated by long-term looking agents. If some 

market is overcrowded with short-looking ones, the market is highly volatile 

and trend-following, which may result into deep deviations from the 

efficient price and form so-called “bubbles”; if there is only long-term 

agents on the market, it is highly illiquid and non-flexible.  Thus, only a 

perfect mix of agents of different trading horizons can create perfectly 

efficient, liquid markets.  

Mandelbrot (1987) compared markets to turbulent seas, implying changing in 

time volatility, non steady movement of prices, market inefficiencies, scaling 
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effect of time. The comparisons with the nature provides introduction to the 

concept of fractals, and the idea, that financial markets are similar to the 

behavior of various natural phenomena in the world. The history of shifts 

from classical to modern views on the market modeling were outlined, 

visualizing some misconduct of classical approach to market modeling, as well 

as providing examples of utilizing the fractional approach. The book served as 

a main motivational cornerstone, which inspired the author of the thesis to 

conduct a further research in this field. 

Mandelbrot’s follower E. Peters (1994) in his book gave more scientific 

examples on the role of fractals in the analysis of financial markets. A strong 

fundamental basis was explained, starting from definition of fractals and 

fractional dimension, proceeding with understanding the nature of fractional 

time series and inconsistency of normal distribution in application to financial 

indices (Dow-Jones, S&P 500). R/S model and V-statistics were introduced 

to help qualitatively and quantitatively analyze time series in order to identify 

the fractional parameter of processes and specific properties, such as 

fractional cycles. 

The findings of Mandelbrot and his followers faced a strong critique and were 

undervalued over a long period of time. However, researches were aimed to 

explain the reasons for financial cataclysms, discovered certain evidence of the 

theory. For example, the research done on the movements of stock prices, 

discovered the presence of so-called “excess volatility” (Shiller (1981)), the 

statement that movements of stocks have larger amplitude than underlying 

assets, which gives the evidence about irrational influence of human behavior 

on the movements of financial markets. There were a lot of other researchers 

stating the problem of the validity of the classical approach to understanding 

the financial system : Peters(1994), Kahneman and Tversky(1974), Hommes 

(2006),  Taylor(1990), Frankel(1986) and others. 
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Longarela et al. (2007) provided the evidence about cases of non-efficiencies 

in option prices. The authors provided the evidence, why non zero bid-ask 

spreads on option market arise and explained them by so-called “quote 

inefficiencies”. They developed theoretical explanation and calculation 

methods to evaluate the so-called “market discrepancies”, that explain 

inefficiencies in the pricings of put and call options. The authors state that 

puzzling systematically inefficient behavior in the options markets occurs, 

while examining the data about European options on the Dow-Jones EURO 

STOXX 50 index, DAX index, options on the E-mini S&P500 futures. 

Jarrow et al (2007) provided strict mathematical proofs for the possibility of 

existence of market inefficiencies, in particular bubbles for  call options, 

explaining that there can exist call option bubbles (no put option bubbles are 

possible) and their magnitude is equal to the magnitude of the underlying 

asset bubble . The significance of the paper is a suggestion for utilizing data 

about options call quotes, because there is a mathematically proven possibility 

to find huge inefficiencies. 

A particular emphasis of the current study is laid on the fractional approach 

to the modeling. The idea of “self-similarity”, proposed by Mandelbrot 

(1987), particularly well fits to the analysis of financial time series. Indeed, as 

financial time series are very volatile, there is an observed similar behavior in 

the financial series on different scale levels. The approach proposed by 

Mandelbrot, and developed by his follower, E. Peters, gave rise to the 

methodology based on heuristics. According to this, the geometric Brownian 

motion, as a stochastic process to model stock movements, is replaced by the 

fractional Brownian motion with a special parameter H (Hurst parameter, 

possessing the name of the English researcher Harold Hurst, who discovered 

the parameter).  

The parameter can have a value in the unit interval. If H is less than one half, 

the financial process is assumed to have a short time memory, with strong 
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fluctuations and interchanging directions of movement. The current increase 

of the process may result in the further decrease of the process. If H is greater 

than one half, the process is characterized by a long memory, the current 

increase in the process will correspond to its future increase (Sviridov et al 

2016). H parameter, which exactly equal one half, corresponds to the 

completely random process, characterized by the geometric Brownian 

motion. 

We can apply the corresponding heuristics to the structure of the financial 

markets. Indeed, we can connect a short time memory to the prevailing 

amount of agents with a short trade-horizon. The long memory process will 

correspond to the prevailing amount of long trade horizon players on the 

market.  

This heuristics lay at the core of the fractional Black-Scholes model for the 

options price prediction.  The modified stochastic process – the fractional 

Brownian motion instead of the geometric Brownian motion, resulted in the 

generalized form of Black-Sholes equation with the strong heuristical 

approach to the analysis of the financial process.  

The fundamental obstacle for the application of the fractional Brownian 

motion, laid in the fact, that as a fBm can have an infinite variation (in more 

scientific notation – it is not a semi-martingale). This fact leads to a problem 

that classical stochastic calculus could not be applied in the case of the 

fractional Brownian motion.  

After Lin (1995) showed that it was possible to do an approximation of fBm 

using  the “fractional Gaussian noises” approach, Rogers (1997) provided a 

proof that financial models based on fBm were ambiguous and inappropriate 

for modeling of prices evolution, because they would have arbitrage 

opportunities and, therefore, were not valid for the market modeling 

(modeled market would be always incomplete and, therefore, would not fit to 
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the real financial markets). After such results, fractional models were claimed 

to be inappropriate for the financial modeling.  

The attitude to the fBm – based modeling changed after introducing a new 

type of stochastic integral for fractional processes (Dunkan et al 2000) . Hu 

and Oksendal (2000) showed that the fractional Black-Sholes model derived 

by means of using an appropriate integral has no arbitrage and therefore is an 

appropriate model. Hu and Oksendal derived the formula of the European 

options for the initial time of option placement.  

Necula (2002) extended the formula to price options for any time period, 

starting from zero till the maturity date.  The formula is valid for any Hurst 

parameter more or equal to one half (for the long memory process). Necula 

showed that option price depends not only by time to maturity, but memory 

characteristic of the underlying asset pricing process. 

Using fractional Brownian motion and Wick-Ito-Skorohod integral, concise 

deduction of the final fractional Black-Scholes formula for the optimal call 

price of the option is provided in the book by Mishura(2008).  

Another theoretical problem is related to the estimation of Hurst parameter. 

Taqqu et al (1995) provided a comparison of different approaches to 

calculation of Hurst parameter (R/S analysis (Mandelbrot and Wallis 1969), 

periodogram method, Higuchi (1988) method).  

Li and Chen (2014) proposed two alternative approaches: the use of the 

inverse fractional Black-Scholes formula to derive the implied Hurst 

parameter, and another approach, which does not depend on any model 

chosen. Li and Chen made an emphasis on the value of the model – so called 

independent approach, which allows to capture a long time memory effect 

more precisely. They also underlined the necessity for the appropriate 

statistical testing of the validity of the Hurst parameter obtained. 
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Regarding empirical results on application of the fractional Black-Scholes 

formula, there are several works. Flint and Maré (2017) verified the 

performance of FBS on the South-African Options market. Among other 

results, there is a particularly interesting conclusion that the Hurst parameter 

is uncorrelated with implied volatility, thus the Hurst parameter captures a 

long-memory component independently. 

The Fractional Black-Scholes model is an alternative way to enhance 

functionality of the classical BS model. The fundamental difference between 

the SABR model is that in the FBS the initial stochastic relation is not 

modified. Instead, non-Markov processes are allowed to act as stochastic 

generators. Using a new fractional parameter, the underlying process is 

allowed to have any correlation, starting from Markov one step – to infinity. 
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C h a p t e r  3  

METHODOLOGY 

 

Overall, the price of an option is dependent on six observables: price of the 

underlying stock (spot price), strike price of an option, number of days until 

option expiration (maturity date), interest rate on risk free asset, dividend yield 

of the stock and volatility of the underlying asset, as unobservable factor. 

 

3.1. General methodology 

Spot price of the asset, strike price of the asset, maturity date,  interest rate, 

dividend yield are the given parameters, characteristics of the option, which 

are directly observed on the market. In comparison  volatility is the realization 

of the random process (volatility changes in time), that needs to be modeled. 

In order to approximate risk free interest rate, government bond yields are 

usually taken, with appropriate time horizon. It means that maturity period of 

the government bond must correspond to the maturity period of an option.  

Dividend yield of the stock is calculated according to financial statements of 

the company that issues the stock, and for the case of index-based stock, it is 

calculated as the average yield of index. Data on monthly dividend yield of 

stock can be easily obtained online for the most of stocks. For current use 

data is obtained from the online source (official S&P500 data). 

There are three models, which are subject to detailed study in this thesis: 

classical Black-Scholes model, fractional Black-Scholes model and SABR 

(stochastic alpha, betha, rho) model. The goal is to compare the model in 
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terms of the empirical performance (modeled option prices versus actual 

prices on options).  

In order to obtain option prices estimation, one needs to fit model 

parameters. There are parameters, specific to every model. Let’s define a 

vector of parameters that need to be fetched as  , and vector of known 

parameters M.  

Then, the estimated option price can be described by generalized formula: 

                                                      (1) 

(vector M includes given standard price parameters in the formula, such as 

price of the underlying asset, strike price, time to maturity etc.) The vector of 

parameters   is specific to every model studied 

Classical Black-Scholes model :  

     ,                                                  (2) 

where   is volatility parameter  

The only parameter that needs to be estimated for the classical BS model is 

the volatility. As one of the assumptions of the classical model is the constant 

volatility of the underlying asset, one needs to adjust the parameter for every 

time period in order to obtain a precise estimate of the option price. 

Fractional Black-Scholes model:  

                                                       (3) 

In the Fractional Black-Scholes model, volatility of the underlying asset 

returns is not constant, but it is dependent onto fractional parameter H – 

called memory of the process, and determines the behavior of the price. If H 
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< 0.5, price movements are named antipersistent, they change direction of 

movement frequently. If H > 0.5, process is called persistent. It remains its 

behavior (upward or downward slope), during long time. If H=0.5, process is 

a completely random – white noise.  

SABR model:   

                                                       (4) 

In the SABR model, volatility of the price movements depends on the four 

parameters. Alpha measures volatility of the price movements, betha is a 

skew, rho is an correlation between two Wiener processes, one for price 

movement, second for the volatility movement. Nu measures so-called 

“stochasticity of variance”.  

So, SABR model, as well as Fractional Black-Scholes model put more 

emphasis on the modeling of the volatility. However, Fractional Black-

Scholes have more intuitive construction framework, which gives the 

researcher ability for the deep understanding of the model, and as the result, 

implicit control over the model parameters.  

To compare the models, we need to use same methodology for estimating the 

model parameters, at least for the estimation of the volatility parameter, which 

is needed for all three models. 

Volatility is considered to be one of the major non-observables for the option 

price. As the volatility modeling in the SABR model is based on the calculated 

implied volatility, using the inverted Black-Scholes formula, we will use the 

same methodology for all three models. 

Firstly, we calculate implied volatility, using so called inverse Black Scholes 

formula (BS is inverted numerically). In other words, one fits the volatility 
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parameter in the BS formula to the extent, when fitted option price will be 

close to the actual option price.  

Secondly, estimation of the volatility parameter is based onto the 

minimization problem: 

            
     

                                   (5) 

where   is model volatility,parameter,    
   is implied volatility calculated using 

inverted BS formula. 

Following from previous equation, best estimator for the volatility parameter 

is  

    
 

 
     

   
                                          (6) 

Calculated volatility parameters on the daily basis, are utilized in all three 

models in order to use common estimation framework in BS, FBS and SABR 

model. 

 As accuracy of any financial model is the metric that shows how the modeled 

prices coincides with the actual prices, we will compare predicted prices on 

options with the actual prices, as observed in the data.  

Accuracy of the model is determined by both model fit (in-sample prediction) 

and prediction accuracy (out-of sample prediction). In order to estimate 

accuracy of the model, we will use several metrics (RMSE, MAE), using the 

following error formulas: 

RMSE (root mean squared error): 

      
 

 
    

            
       

                          (7) 



19 
 

MAPE (mean absolute error): 

     
 

 
  

  
         

   
    

  
      

                                (8) 

 

3.2. Models discussion 

Classical Black-Scholes model 

Classical Black-Scholes model assumes that there is exactly one riskless asset 

and option on the risky asset on the market. Using the hedge strategy, a player 

can diversify his savings using both assets. 

Derivation of an option price model includes the assumption, that the price 

of the asset under option have the data generating process, described by the 

next formula: 

dS = μSdt + σSdz,                                          (9) 

where mu is a price drift, z is geometric Brownian motion, with mean 0 and 

variance σ, S is a stock price.  

Final formula for the call option price under Black-Sholes model can be seen 

from the next formula: 

                     
                        (10) 

     
                 

 

 
       

       
                              (11) 

where S is a current price of the underlying asset, Ф is a Gaussian distribution 

function, K is a strike price ,T is maturity date , t is a current date, r is an 

interest rate,   is dividend yield,   is an option volatility 
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The formula for the put option price can be derived from put-call parity and 

equals to 

              
                            (12) 

Overall, the price of an option is dependent on six parameters: price of the 

underlying stock (spot price), strike price of an option, number of days until 

option expiration (maturity date), interest rate on risk free asset, dividend yield 

of the stock, volatility. 

In order to approximate risk free interest rate, government bond yields are 

usually taken, with appropriate time horizon. It means that maturity period of 

the government bond must correspond to the maturity period of an option. 

Dividend yield of the stock is calculated according to financial statements of 

the company that issues the stock.  

Volatility parameter is common for all three models and is calculated 

according to the methodology described at the beginning of the chapter. 

 

Fractional Black-Scholes model  

The Fractional Black-Scholes model, used for estimating the option price, 

states that several parameters influence the price of an option: the price of the 

underlying asset and its volatility, strike price of option, time to maturity, 

interest rate of risk-free asset (for example, government bonds),the fractional 

parameter of the financial market, which is called Hurst parameter.  

The functional form of the model can be seen in the next formula: 
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 ,          (13) 

Where S is current price of the underlying asset, Ф is a Gaussian distribution 

function, K is a strike price, T is a maturity date (in years from the 

beginning),t is a current date (in years fraction), sigma is a standard deviation 

of the underlying price, H is a fractional Hurst parameter, H є [0,1], r is an 

interest rate,   is dividend yield. 

All parameters, except the Hurst parameter and volatility are exogenous 

parameters, which should be present in the dataset for estimation. However, 

problems with estimation of two parameters may well arise. As these 

parameters are subject to the researcher’s effort to be estimated, they are 

called implied parameters.  

Standard deviation measures the magnitude of uncertainty about the future 

price of option. The longer is the period to option maturity and higher 

deviation of prices of the underlying asset, the higher is the price of the call 

option, as there is more probability that the price of the underlying asset will 

rise. If time to maturity is short and deviation is small, the low price on option 

resembles the fact that it is highly unrealistic for the price of the underlying 

asset to change dramatically.  

As the classical Black-Scholes model tends to underestimate  options close to 

maturity and overestimate options with a high strike price, the implied 

volatility is estimated to achieve higher accuracy of the model. 

To overcome the limitation of the classical Black-Scholes model, in particular, 

the assumption about constant volatility, the practitioners approach is to 

estimate locally constant volatility by using sliding window.  

The process followed in the current study is as follows – take the time frame 

(for example 30 days) of the underlying asset price, calculate volatility, and 
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assume that volatility to be the same for 31st day. Then move the time 

window one step ahead and repeat the process again.  

A comparative method is to estimate the implied volatility parameter (simply 

the volatility, for which the classical Black –Scholes model will produce the 

same option price as observed in the market), and then calculate the 

regression: 

                     
 

 
       ,                    (14) 

Where t is a time to maturity,    in the left hand side stands for implied 

volatility and H is a Hurst parameter (Li and Chen 2014). By using the 

estimated regression it is easy to extrapolate the value of volatility to the 

future unknown period for the price prediction. Both methods are used in my 

work. 

However, the Hurst parameter estimated simply with the regression can be 

subject to the bias due to non stationary data. Moreover, some additional 

statistical verification is needed (except of F - statistics), to prove that the 

underlying asset pricing process can be modeled with the fractional Brownian 

motion. 

So, to obtain the Hurst parameter, some preliminary steps should be taken. 

Firstly, logarithmic difference is needed to be taken in order to detrend the 

data and obtain the Brownian process, which is assumed as the underlying 

data generation process for the price of the underlying asset. 

        
  

    
 ,                                       (15) 

Where x is the underlying asset price. 
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The next step is to obtain the initial estimate of the Hurst parameter, using 

methodology of R/S (rescaled range) analysis (Taqqu et al 1995) using the 

formula  

 

 
    

 

    
               

 

 
                    

 

 
       , (16) 

where n is a length of sliding window chosen,   is a logarithmic difference of 

asset prices, S is a standard deviation of prices. According to the 

methodology, rescaled range should be calculated for each subsequent  period 

and using the simple OLS, Hurst parameter should be calculated by using the 

formula: 

Log(R/S)n= a+H*log(n),                                  (17) 

where a is the slope of regression, H is an estimate for Hurst parameter 

The package “fractal” in R can be used for calculation. However, the obtained 

estimate is only initial, and should be used as an initial parameter in the next 

methodology, which obtains more precise value, but needs the initial guess for 

computation.  

Next step is further calibration of the Hurst parameter obtained, using 

methodology developed by Nourdin et al (2010). 

Final step is verification of the statistical significance of the H parameter 

obtained. Hypothesis, that underlying asset prices can be modeled with 

fractional Brownian motion, with Hurst parameter obtained. Details of the 

estimation procedure are provided in Appendix A.  

After estimation of  the parameter H, the Fractional Black-Sholes model can 

be applied to arrive at the option prices.  
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SABR model 

According to the Hagan et al (2004), SABR model is based on the different 

generation process and assumed to consist of two processes, which have their 

own stochastic Markov Brownian motions. 

Option price is given by the standard BS formula: 

                     
                         (18) 

     
                 

 

 
       

       
 ,                        (19) 

where K is a strike price, r is risk free rate,   is a dividend yield, T is time to 

maturity, S is underlying asset price,   is a volatility of the underlying asset. 

However,   parameter in the previous formula is replaced by the calculated 

implied volatility: 
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                               (22)  

where a, b r, v are the SABR model parameters which are subject to 

calibration. 

There are two steps for calibration of the parameters of SABR model: 

Betha parameter can be obtained from the log of previous equation, using 

OLS:  
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                                             (23) 

The second step is to obtain another three parameters solving minimization 

problem by using numerical methods (for example Newton-Rhapson 

method) 

                     
                            (24) 

After estimating all coefficients, the implied volatility can be calculated. The 

implied volatility parameter is then placed into the original Black-Scholes 

formula to obtain a price for the option. 
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C h a p t e r  4  

DATA DESCRIPTION 

 

The dataset taken for investigation contains hourly SPX option prices quotes 

on S&P 500 in the period of 2005-2006 years. Options in the current dataset 

have different maturity periods, starting from 3 weeks up to 2 years. There are 

different strike prices as well, so the current data provide a great opportunity 

for comparison of different models on different maturities of options.  

 The data about the risk free rate needed for modeling are taken from the U.S. 

Government Treasury Bills 30-day rate data for the same period, and 

extrapolated to cover all intermediate periods. The description of the major 

variables can be found in the Table 1.  

Table 1. Descriptive statistics1 

Variable  N Mean Std Min Max 

Strike price  66328 1079.99 288.09 70.00 1650.00 

Option price  66328 150.93 173.88 0.00 998.50 

Underlying price  66328 1168.86 220.12 0.00 1272.74 

Standard 
deviation  

66328 240.30 83.24 10.91 379.75 

Risk free rate  66328 3.15 0.45 2.42 4.01 

 

4.1. Data preparation 

Data was subject to filtering.  

Time to maturity. Options with the time to maturity less then 7 and more then 

850 days were filtered out from the dataset. Resulting distribution can be seen 

on the Figure 1. 
                                                 
1 Source: own compilation using data for S&P 500 options from CBOE 
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Figure 1. Distribution of the time to maturity of options  

 

Strike price. We filter out the data with both extremely low (less than 500) and 

extremely high (more then 1600) strike prices, which seem to be an outliers or 

due to improper data formation. Resulting distribution can be seen on the 

Figure 2. 

 

Figure 2. Distribution of strike prices of options  

 

The strike price graph resembles a lognormal distribution, a bit skewed to the 

right. Distribution of strike prices resembles a belief about the value of 

underlying index value – indeed, from the Table 1, we can see that the average 

price of index of 1168.86 dollars. 
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Moneyness. Moneyness is an ratio of strike price of an option to the current 

price of the underlying asset. If moneyness is close to one, options are called 

“at the money”. For moneyness less then one, options are called “in the 

money”,if it exceeds one, options are said to be “out of the money”. We filer 

out data based on moneyness parameter due to lack of enough data for the 

moneyness less than 0.4 and moneyness parameter more than 1.4 (Figure 3). 

 

Figure 3. Moneyness of the options  

 

4.2. Resulting dataset description 

Resulting dataset is described in the Table 2 (number of data points) 

Table 2. Number of data points collected 

 
money-

ness 
0.3-
0.6 

0.6-
0.7 

0.7-
0.8 

0.8-
0.9 

0.9-
0.95 

0.9 -
1 

1-
1.05 

1.05-
1.1 

1.1-
1.5 

Totals 

maturity 
 

1-40 591 800 1,377 2,353 2,550 3,393 3,460 1,813 1,123 17,460 

41-90 539 906 1,447 1,871 1,410 2,323 2,868 1,281 1,179 13,824 

101-250 1,275 1,094 1,579 2,260 1,117 1,145 1,140 916 2,370 12,896 

251-500 1,243 1,081 1,405 2,231 1,027 1,086 1,067 934 2,352 12,426 

>500 387 747 757 977 522 698 667 551 1,955 7,261 

Totals 4,03 4,62 6,56 9,69 6,62 8,64 9,20 5,49 8,97 63,86 
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Distribution of pricing of the options is described in the Table 3 (average 

prices in groups are given). 

Table 3. Average prices by group 

 

There are one, two and three year options present in the dataset, however, 

there is some variation in the expiration dates.  

From the graph of historical S&P500 prices, we can see, that 2004 -2005 years 

used in current research display comparable dynamics to the other time 

periods, despite structural break in year 2008. 

 

Figure 4. S&P 500 historical prices2  

                                                 
2 source: http://markets.businessinsider.com/index/historical-prices/s&p_500 

 
moneyness 0.3-

0.6 
0.6-
0.7 

0.7-
0.8 

0.8-
0.9 

0.9-
0.95 

0.9 
-1 

1-
1.05 

1.05-
1.1 

1.1-
1.5 

Totals 
maturity 

 

1-40 583 404 293 173 91 39 7 1 1 107 

41-90 587 415 301 183 97 45 13 2 0 127 

101-250 598 423 306 197 114 68 31 12 1 187 

251-500 590 431 317 218 142 100 64 35 9 202 

>500 548 449 345 246 179 139 105 73 26 193 

Totals 587 424 309 198 111 60 26 16 9 156 
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C h a p t e r  5  

ESTIMATION RESULTS 

 

The results from the estimation of classical Black-Scholes and fractional 

Black-Scholes models can be shown with the next figures. To see the 

mispricing issues of models, we construct the graphs, where actual prices are 

sorted in ascending order and corresponding prices obtained from the models 

are graphed, with price on option as y-axis, and the number of observations in 

the sorted table as x- axis (Figure 5) . 

 

Figure 5. Sorted actual prices of options 

 

5.1. Classical Black-Scholes model estimation results 

Estimation results obtained from applying Black-Scholes model to the 

S&P500 index options data can be observed on the next Figure 6. 
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Figure 6. Classical Black-Scholes pricing errors 

 

From the graph we can see that the classical BS model poorly (in terms of 

error metrics described above) estimates options with low prices. The main 

drawbacks of the model result into significant mispricing of the options, 

because of normality and stationary data (constant volatility of underlying 

asset prices is possible only under the assumption of stationary price series) 

assumed by the model. 

From the Tables 4 and 5 we can observe errors of the model in more details. 

We can see that the worst results in terms of MAPE appear for the options 

out-of-the money. However, as we saw from the Table 3, prices for those 

options are extremely low, so the mispricing is actually possible. 

Table 4. Mean absolute percentage errors of Black-Scholes model: 

 
money-

ness 0.3-
0.6 

0.6-
0.7 

0.7-
0.8 

0.8-
0.9 

0.9-
0.95 

0.9 -
1 

1-
1.05 

1.05-
1.1 

1.1-
1.5 

Totals 
matu-

rity 
 

1-40 0 0.01 0.01 0.01 0.02 0.1 2.02 2.92 1.19 0.81 

41-90 0.01 0.01 0.02 0.03 0.03 0.1 0.56 2.63 1.84 0.52 

101-250 0.02 0.04 0.05 0.06 0.06 0.11 0.28 1 4.04 0.74 

251-500 0.05 0.07 0.08 0.09 0.1 0.12 0.19 0.35 1.28 0.29 

>500 0.1 0.11 0.13 0.13 0.14 0.16 0.19 0.27 0.53 0.22 

Totals 0.04 0.05 0.05 0.06 0.05 0.11 0.93 1.78 1.98 0.56 
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Table 5. Root mean squared errors of Black-Scholes model 

 

5.2 SABR model estimation results 

To estimate SABR model, we firstly need to calculate the implied volatility. 

This procedure can easily be done by using inverse Black-Scholes formula 

and find such a volatility, with which the model will fit to the actual price 

most accurately. This procedure is done using R package RquantLib. 

Distribution of implied volatilities in comparison with volatilities calculated 

with the sliding window approach can be seen in the next figures: 

Table 6. Implied volatility 

 

 
moneyness 0.3-

0.6 
0.6-
0.7 

0.7-
0.8 

0.8-
0.9 

0.9-
0.95 

0.9 -
1 

1-
1.0
5 

1.05-
1.1 

1.1-
1.5 

To-
tals maturity 

 

1-40 2.2 5.7 15.1 27.0 46.4 21.8 2.2 5.7 15.1 27.0 

41-90 2.2 5.3 13.1 21.5 35.0 15.8 2.2 5.3 13.1 21.5 

101-250 1.9 4.0 9.7 15.1 24.8 10.5 1.9 4.0 9.7 15.1 

251-500 2.5 5.3 8.6 11.2 15.8 7.2 2.5 5.3 8.6 11.2 

>500 4.2 9.8 16.2 18.7 18.0 11.2 4.2 9.8 16.2 18.7 

Totals 4.3 10.4 18.9 25.5 24.1 13.3 4.3 10.4 18.9 25.5 

 
moneyness 

0.3-0.6 0.6-0.7 
0.7-
0.8 

0.8-
0.9 

0.9-
0.95 

0.9 
-1 

1-
1.05 

1.05-
1.1 

1.1-
1.5 

Total
s maturity 

 

1-40 0.22 0.2 0.21 0.22 0.22 0.2 0.2 0.18 0.2 0.2 

41-90 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.1 0.09 

101-250 0.1 0.09 0.09 0.1 0.1 0.1 0.1 0.09 0.1 0.1 

251-500 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

>500 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

Totals 0.11 0.11 0.12 0.12 0.14 0.14 0.13 0.12 0.1 0.12 
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Figure 7. Implied volatility calculated using inverse BS formula 

 

Figure 9 provide an insight about accuracy of the SABR model built. 

 

Figure 8. SABR model pricing errors 

 

From the Figure 8 we can see, that SABR misprices option with low price. 

In the Tables 7 and 8 we can observe errors of the model in more details. 

Errors for out-of-the-money options are smaller than those for Black-Sholes 

model. Looking into rot mean squared errors, we can see that options which 

moneyness more then one, are mispriced in both models, hoverer SABR 

model gives more precise estimates (in terms of both mean absolute 

percentage errors and root mean squared errors). 
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Table 7. Mean absolute percentage errors of SABR model 

 

Table 8. Root mean squared errors of SABR model 

 

 

5.3 Fractional Black-Scholes model estimation results 

Fractional Black-Scholes model is assumed to better fit non-stationary returns 

data, when returns are not independent. The results of the estimation of 

fractional Black-Scholes model show good accuracy and can be seen on 

Figure 9. 

 
moneyness 0.3-

0.6 
0.6-
0.7 

0.7-
0.8 

0.8-
0.9 

0.9-
0.95 

0.9 -
1 

1-
1.05 

1.05-
1.1 

1.1-
1.5 

totals 
maturity 

 

1-40 0 0 0.01 0.01 0.01 0.14 0.99 1 1 0.4 

41-90 0.01 0.01 0.02 0.02 0.02 0.22 0.96 1 1 0.44 

101-250 0.02 0.04 0.05 0.05 0.03 0.18 0.83 1 1 0.37 

251-500 0.05 0.06 0.08 0.07 0.04 0.12 0.55 0.98 1 0.36 

>500 0.1 0.11 0.12 0.11 0.08 0.07 0.22 0.67 0.99 0.39 

Totals 0.03 0.04 0.04 0.04 0.02 0.16 0.88 0.97 1 0.39 

 
moneyness 0.3-

0.6 
0.6-
0.7 

0.7-
0.8 

0.8-
0.9 

0.9-
0.95 

0.9 -1 1-1.05 
1.05-
1.1 

1.1-
1.5 

Totals 
maturity 

 

1-40 1.9 2.2 2.2 2.0 1.5 4.4 5.3 0.3 0.2 3.3 

41-90 5.8 5.7 5.6 4.7 2.2 9.1 13.7 2.4 0.3 7.9 

101-250 15.1 15.5 14.8 10.6 4.1 12.6 26.3 14.5 2.7 13.4 

251-500 28.0 28.2 25.0 17.5 6.8 12.9 32.3 34.9 11.7 22.3 

>500 53.3 48.1 41.9 28.2 16.9 11.5 23.8 46.0 29.7 34.1 

Totals 21.6 23.3 18.3 12.5 5.2 8.8 16.9 19.2 13.3 18.4 
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Figure 9. Fractional Black-Scholes model pricing errors 

 

We can see that additional fractional parameters  substantially reduce the error 

of the fit to the data.  

Tables 9 and 10 contain more detailed information on pricing errors of FBS 

model. In particular, the model provides a very good fit to the prices of short- 

and medium-term and in-the-money options, but is less successful with 

longer-term and out-of-the-money contracts. If we compare these results with 

those of the classical BS model (Tables 4 and 5), we can notice that FBS is 

actually doing a worse job with longer-term and out-of-the-money options. 

We observe slightly better results in terms of mean absolute percentage error 

for all groups of options. 

Table 9. Mean absolute percentage errors of Fractional  Black-Scholes model 

 
moneyness 0.3-

0.6 
0.6-
0.7 

0.7-
0.8 

0.8-
0.9 

0.9-
0.95 

0.9 -
1 

1-
1.05 

1.05-
1.1 

1.1-
1.5 

To-
tals maturity 

 

1-40 0.00 0.00 0.01 0.01 0.01 0.13 0.93 1.00 1.00 0.38 

41-90 0.01 0.01 0.02 0.02 0.02 0.20 0.84 0.98 1.00 0.41 

101-250 0.02 0.04 0.05 0.05 0.03 0.17 0.70 0.93 0.99 0.35 

251-500 0.05 0.06 0.08 0.07 0.04 0.11 0.44 0.82 0.96 0.33 

>500 0.10 0.11 0.12 0.11 0.08 0.07 0.19 0.50 0.88 0.35 

Totals 0.03 0.04 0.04 0.04 0.02 0.15 0.79 0.92 0.97 0.37 
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Table 10. Root mean squared errors of Fractional Black-Scholes model 

 

Estimated H parameter for the FBS is 0.69, which proves a long-time 

dependence of underlying S&P 500 index and coincides with results in 

Bayraktar et al (2003). 

Q statistics is 0,997 and p-value of test is 0.043, so we failed to reject the 

hypothesis about the fractional nature of the underlying price of index.  

SABR provides the worse in-sample fit than FBS model, and is comparable to 

the BS model in terms of root mean square errors and mean absolute 

percentage error 

In sample errors can be summarized in the following table: 

Table 11. Summary of  accuracy of fit of the models 

Model RMSE MAPE 

Black-Scholes 25.5 0.56 

Fractional Black Scholes 17.53 0.37 

SABR 18.4 0.39 

 

As we can see from the graphs, Fractional Black-Scholes provides more 

accurate results, especially in the middle range of option prices  

 
money-

ness 
0.3-
0.6 

0.6-
0.7 

0.7-
0.8 

0.8-
0.9 

0.9-
0.95 

0.9 -
1 

1-
1.05 

1.05-
1.1 

1.1-
1.5 

Totals 

maturity 
 

1-40 2.24 2.49 16.25 2.35 1.98 27.22 20.27 1.42 0.22 15.86 

41-90 5.69 5.87 5.85 5.03 3.59 5.23 6.07 3.99 0.99 5.10 

101-250 15.02 15.57 14.66 11.73 8.38 9.27 10.53 10.36 6.19 11.61 

251-500 29.37 29.28 26.45 20.73 15.06 13.57 14.51 14.91 12.41 20.73 

>500 55.06 49.73 44.13 32.86 26.03 23.02 21.22 21.76 18.92 33.42 

Totals 25.99 26.34 22.42 16.00 10.60 18.56 14.93 10.65 10.90 17.53 
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C h a p t e r  6  

CONCLUSIONS 

 

The purpose of this thesis is to estimate and compare empirical performance 

of three alternative option pricing models: classical Black-Scholes model, 

fractional Black Scholes model and Stochastic alpha, betha, rho model.  

S&P 500 index options data is used to estimate option pricing models, predict 

a price according to each model and compare it to the actual. In order to put 

three models into the common estimation framework, volatility parameters 

are  calculated in order to minimize the squared error between implied 

volatility parameters and computed volatilities. Black-Scholes model is then 

estimated as a baseline for the current study.  

Next step is calculation of Hurst parameter for the  Fractal Black-Scholes 

model and verification of the significance of the parameter obtained. Based 

on volatility parameter and Hurst parameter, FBS model is estimated.  

Stochastic Alpha, Betha, Rho model is estimated using numerical Newton-

Rhapson algorithm, modeled option volatility is then plugged into the original 

Black-Scholes model.  

Accuracy metrics of models are obtained in terms of standard error metrics – 

root mean squared errors and mean average percentage errors of models, 

which are widely used for model comparison. 

According to the results, S&P 500 option prices are most accurately predicted 

by the Fractional Black Scholes model. Performed statistical test suggest that 

we can use fractional model for these options. Fractional Hurst parameter 

obtained is consistent with the literature and reflects the behavior of the 

returns. 
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Fractional Black-Scholes model gives the best accuracy in the range of in-the-

money and at-the-money option prices, and average accuracy for out-of-the-

money options, however, the results are better than Stochastic Alpha Betha 

Rho and Black-Scholes models.  

Conclusions are, that emerging model of Fractional Black-Scholes model is a 

next step in the evolution of the classical approach to the modeling, with 

better heuristics and more intuitively explained parameters, by the same time 

with competitive accuracy of the model.  
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APPENDIX  

RESCALED RANGE ANALYSIS  

 
 

Algorithm of R/S analysis is following ( Peters 1994): 

1. Begin with a time series of length M. Convert it into a time series of 

length N = M - 1 from logarithmic equations. 

).1(...,3,2,1,1log 
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or using the AR (1)-differences. 

2.  Divide this period of time by A adjacent subperiods of length n, so that 

A*n=N. Label each subperiod aI , given that a = 1, 2, 3…, A. Each 

element in aI  is labeled kN with k = 1, 2 , 3…, N. For each aI  of length 

n the mean value is defined as:  
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where aE is the mean value of kN  contained in subperiod aI  of length n. 

3. Time series of accumulated deviations  akX ,  on the mean value for 

every subperiod aI  is defined as:   

....,2,1),(
1 ,,  
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i aaiak nkeNX                          (27) 

4. The range is defined as the maximum value minus the minimum value 

akX ,  within each subperiod aI : 
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                   (28) 

5. The sample standard deviation is calculated for each subperiod aI : 
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6. Each band kaR  is now normalized by dividing by the matching iaS . 

Therefore, re-rescaled range during each subperiod aI equals iaia SR . In 

step 2 above, we got adjacent subperiods of length n. Consequently, the 

mean value of R/S of length n is defined as: 
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7. The length n is increased to the next higher value, and   nIM   is an 

integer value. We use the value n, including the start and end points of a 

time series, and steps 1-6 repeated until   21 Mn . We can perform a 

simple linear regression on log(n) as an independent variable and on 

n
sr )/log(  as a dependent variable. The line segment cut off by a 

coordinate axis is an estimate of log(c), a constant. The slope of the 

equation is an estimate of the Hurst exponent. 

Next step is further calibration of the parameter obtained. The process 

explained by Nourdin et al (2010), requires calculating of special statistics Q 

1

),(8,0 1

1 
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                                       (31) 

where     - normalized correlation matrix of fractional Brownian motion  

increments, 

              . – vector of the realizations of fBm (log-differenced price 

of asset). 

Elements of the correlation matrix    are calculated using the next formula 

    
                   

 
                                       (32) 
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Q statistics is evaluated for different values of H with some step, and the best 

value of the parameter H corresponds to the value of statistics closer to 1.  

                                                   (33) 

Using the simple numerical algorithm, which gives more accurate estimation, 

but demands a lot of computation facilities, we arrive at the final value of the 

computed Hurst parameter. 

Final step is to verify statistical significance of the H parameter obtained.  

Firstly, one needs to calculate  

      
   
                                             (34) 

And   
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and use statistics 

   
 

    
   

   
                                       (36) 

if      
 

 
  or  
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If    
 

 
   . 

Where    are log- transformed prices of the asset. 

 If  the hypothesis about the fractional Brownian motion with the obtained 

Hurst parameter is valid for the underlying process , and price differences 

belong to fBm according to its definition, then the next statement should be 

valid 
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                                                 (38) 
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where   
 

 
   

  
   , and random variable       

 

    
 . 

To verify the hypothesis one needs to verify the next condition. The 

hypothesis about the fractional process fails to be rejected if inequality is valid: 

                                                   (41) 

if H> 0,5 or 

                                                      (42) 

if Н <0,5, 

where   - quantiles of limit distributions, corresponding to the significance 

level  .  

If       then 

                                          (43) 

                                            (44) 

 

2

2

3
cAAn 

2

5

3cBn 

)1(
2

3 22BcDn 

20  nD

1|| nB

22

95,4 5,2

1



H

c


2
2 08,4 c


