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Kyiv School of Economics 

Abstract 

FIRST PRICE SEALED BID AUCTIONS WITH INTERDEPENDENT 

VALUATIONS 

by Ilin Dmytro 

 

Thesis Supervisor: Professor Pavlo Prokopovych 
   

 

The focus of this research is on finding conditions for the existing of a pure and 

mixed strategy Nash equilibrium for the first price sealed bid auctions with 

interdependent valuations. First, we present a number of the sets of necessary and 

sufficient conditions under which a pure strategy Nash equilibrium exists in the 

first price sealed bid auction with complete information in the presence of 

externalities. Then, we study the conditions under which a mixed strategy Nash 

equilibrium exists in this type of auctions. In addition, we analyze the first price 

sealed bid auction with incomplete information and show the conditions in which 

symmetric mixed strategy Nash equilibrium exists. 
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C h a p t e r  1  

INTRODUCTION 

The classical models of auctions analyze the situation when a bidder who loses 

does not care who wins the auction. However, many real life cases should be 

modeled as auctions with interdependent externalities. The presence of 

interdependent externalities means that the utility of a player who loses depends 

on that who wins the auction.  For instance, if a museum wants to buy some 

famous painting in the auction and loses, its valuation may depend on that who 

wins: the other museum or a private collector. Another example is the 

competition between more than two oligopolists for a patent. In this case, it 

may be crucial for each of them who receive the patent, if they lose the 

competition (Funk, 1990, 1996). Baye, at al (1996) showed how the standard all 

pay auction models could be used to analyze various cases in different fields: 

political campaigns, job promotion, lobbying for rents, and tournaments (M. R. 

Baye et al, 1996). Thus, it is possible to notice that the theoretical analysis of 

such auctions can be successfully applied in practice for the analysis of different 

situations.  

 

There are two main types of auctions, first price sealed bid auction and all pay 

sealed bid auction. First price sealed bid auction means that all players 

simultaneously submit their bids and after that, a player with the highest bid 

wins the auction paying her initial bid. All pay sealed bid auction is almost 

similar but at the end, all players pay their bids regardless of their winning. 

 

A good example of application of the all pay auction model is elections. During 

campaigns, political powers spend millions of hryvnas to get as many voters as 
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possible; however, there is only one winner. Increase the payments usually 

increases the chances to win. This situation can be modeled by using the 

standard all pay auction. However, in reality, the consequences for a big party, 

which lost the rayon elections, can be different. It depends on that who won: 

some local party, which is not even in the parliament, or their main opponent. 

Probably a major party prefers to lose to some local party, because this fact 

does not change the parity between the major parties in the country. 

 

The results we intend to obtain in this theoretical research could be used for 

better understanding of the above situation, because they give more 

information about strategies and outcomes. 

 

Thus, the main aim of the thesis is to study first price sealed bid auctions with 

interdependent externalities, and to find the conditions under which they 

possesses a Nash equilibrium, a stable point from no player wants to deviate 

given the other players’ strategies. 

 

The paper is organized as follows. Section 2 provides a short review of some 

related literature about the auctions without externalities and with externalities. 

Section 3 overviews the methodology, discusses some mathematical models of 

auctions. Section 4 presents a number of the sets of necessary and sufficient 

conditions under which a pure strategy Nash equilibrium exists in the first price 

sealed bid auction with complete information in the presence of externalities. 

Section 5 describes the conditions under which a mixed strategy Nash 

equilibrium exists in the first price sealed bid auction with complete 

information. Section 6 presents the conditions in which symmetric mixed 

strategy Nash equilibrium exists in the first price sealed bid auction with 
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incomplete information. Section 7 concludes the results and suggests directions 

for future work. 
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C h a p t e r  2  

LITERATURE REVIEW 
 

This section is organized as follows. The first part is concentrated on the 

methods and approaches used in the literature to model the auctions without 

externalities. The second part is focused on existing results about auctions with 

interdependent valuations. 

 

2.1 Auctions without externalities 

It should be noted that the question of equilibrium existence in the first price 

and all pay auctions without externalities has studied quite well: 

 

Baye et al. (1996) proved that the mixed strategy equilibrium always exists in the 

model of all pay auctions without externalities. In this model, there is only one 

variable, which characterize every player. It is his or her valuation of the object. 

The authors considered all possible sets of combinations of valuations and find 

all sets of equilibriums in every case. The equilibriums described are as follows: 

 

1. All valuations are equal. There is a unique symmetric equilibrium and a 

continuum of asymmetric equilibriums. In addition, it was founded that 

all these equilibriums are payoff equivalent meanings that the revenue 

for the seller is the same in every case. 

 

2.  The second and the third highest valuations are equal and strictly less 

than the first one. In this case there is a unique equilibrium in which all 

agents who have the same values use an identical strategy. In addition, 

there are a continuum of equilibriums without this condition. The 

interesting fact is that these equilibriums are not payoff equivalent. It 
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means that in different equilibriums the outcome for some player could 

be different. 

 

3. At least the first three valuations are not equal to each other. This case 

was considered earlier by Hillman and Riley (1984). They found that 

there is a unique equilibrium in this situation. 

Notice that Baye et al. (1996) fully characterized the set of equilibria in the all 

pay sealed bid auctions. In the model with externalities the number of possible 

cases is very large, because each player has not one characteristic (own 

valuation), but N (own valuation and N − 1 outcomes if some other player 

wins). However, the idea of partitioning into some classes can be successfully 

used in this case. 

 

Albano and Matros (2004) considered a wider class of bidding games with 

complete information which include standard fist price sealed bid auctions and 

construct the continuum of pure and mixed strategy Nash equilibriums. 

Thus, the issue about equilibria in the auction without externalities has been 

studied in much detail. Baye et al. (1996) described the set of equilibria of the all 

pay sealed bid auction, and Albano and Matros (2004) described the set for the 

first price sealed bid auction. 

 

2.2 Auctions with externalities 

Auctions with externalities have not been studied well enough. The general 

conditions in which the equilibrium exists still unknown. Only some special 

cases are considered. Let us consider the papers about auctions with 

externalities and examine special cases they analyzed.  
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Funk (1996) was the first to study the first price sealed bid auctions with 

externalities. The author considered the first price sealed bid auction two-steps 

model with auctioneer as a player and nonstandard tie-breaking rule, and found 

the equilibrium conditions. Tie-breaking rule determines the winner when 

several players ordered the highest bid. In this model, the auctioneer chooses 

the tie-breaking rule after all player submit his or her bids. Let us consider the 

model in detail: 

 

An auctioneer would like to sell some object and there are some players who 

want to buy it. Every buyer submits her bid. The strategy for the seller is the 

function from the set of bids to the set of players which determine the winner. 

It is possible to assume that auctioneer bids zero because the auctioneer does 

not pay the price. The profit for the buyer is the difference between his 

valuation and bid if he wins, and some specific amount which depends of who 

wins if he loses. The profit for the auctioneer is also determined according to 

this concept. Let us introduce some additional notations: the maximum amount 

what player would like to pay in order to win rather than some other player 

wins. For the auctioneer it means the minimum price at which he or she would 

like sell the object. Funk proved that an equilibrium exists if there are two or 

more players who submitted the maximum amount and nobody wants to 

submit more in order to prevent the winning of one of these bidders. 

 

However, in the conventional auctions, the auctioneer does not move after the 

start and the tie-breaking rule is also known for players before they bid. The 

setup of my model is different: the auctioneer is considered as a part of the 

game and the tie-breaking rule is common knowledge before the game started. 
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Another attempt to analyze first price sealed bid auctions with externalities was 

made Varma (2002). He considered the standard open and winner-pay sealed 

bid auctions with identity dependent externalities. However, Varma introduced 

only two types of externalities – zero for some players and some fixed negative 

amount for other. Thus, this model is considered as a special case of the model 

studied in this thesis. 

 

Jehiel and Moldovanu (2006) showed that bidders might play significantly 

different equilibriums if externalities are present. However, they do not analyze 

the conditions in which these equilibria exist. They just consider some special 

case of auctions with and without externalities and show that in this case, 

equilibria exist and they are different. This underlines the importance of 

studying the model with externalities. 

 

A number of attempts were made to analyze all pay sealed bid auctions with 

externalities. Konrad (2006) considered the model of all pay auction with only 

one bidder who has identity-dependent externalities. It means that only one 

player is not indifferent who wins the auction if he or she loses. 

 

Sealed bid auctions with interdependent valuations were studied by Klose and 

Kovenock (2013), who proved that under very unrestrictive conditions in the all 

pay auction with externalities a mixed strategy Nash equilibrium always exists.  

 

In this thesis, sufficient conditions for equilibrium existence in the first price 

sealed bid auction with interdependent valuations are investigated. 
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C h a p t e r  3  

METHODOLOGY 
 

This section is organized as follows. The first part is concentrated on the 

methods and approaches used in the literature to model the auctions without 

externalities. The second part is focused on existing results about auctions with 

interdependent valuations. 

 

P.Funk (1996) considered the first price sealed bid auction model with 

externalities. However, in this model the auctioneer determines the tie-breaking 

rule endogenously, in the course of the game. The model studied here uses the 

standard tie-breaking rule, which is more related to the reality, because in real 

life auctions auctioneer usually cannot make any decisions after the auction 

starts. This case has not been considered before.  

 

To explain the model intuitively, let us consider the following situation. 

Suppose there are some political parties competing in an election. They can 

spend money to increase the loyalty of their electorate. Let us assume that the 

party which spends the biggest amount of money wins the elections. However, 

if a party loses the election, the spent money is not reimbursed. In addition, we 

assume that the payoff of the defeated party depends on who the winner is. 

This situation is described by the all pay sealed bid auction model with 

externalities. 

 

Suppose there is a set of players i ∈ I = {1, … , n}. They compete for a single 

prize.  Every player submits their bid bi ≥ 0, i ∈ I. The player with higher bid 

wins the auction. In the case of tie betweenk players with highest bids, 

everybody wins with probability 1/k. This is the commonly used standard tie-
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breaking rule. Player 𝑖 values the prize as vi, i ∈ I, if she wins the auction. 

However, player’s 𝑖 valuation can depend on that who is the winner if she loses 

the auction. Let us denote these valuations as hi
j
, j ≠ i, if player j wins the 

auction. Notice that hi
j
 can be positive, negative or zero. All the information is 

common knowledge. 

 

The player’s utility functions in the model without externalities are: 

 

Ui
FP = {

vi − bi,     if player 𝑖 wins the auction
0,        if player j ≠ 𝑖 wins the auction

 

 

in the case of first price sealed bid auction. 

 

Ui
AP = {

vi − bi,     if player 𝑖 wins the auction
−bi,        if player j ≠ 𝑖 wins the auction

 

 

in the case of all pay sealed bid auction. 

 

In order to realize the specification of my thesis research we are going to consider 

the following utility functions in the case with externalities: 

 

Ui
FPE = {

vi − bi, if player 𝑖 wins the auction

hi
j
,   if player j ≠ 𝑖 wins the auction

 

 

in the case of first price sealed bid auction. 

Ui
APE = {

vi − bi,     if player 𝑖 wins the auction

hi
j

− bi, if player j ≠ 𝑖 wins the auction
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in the case of all pay sealed bid auction. 

 

The first model is adjusted to Funk’s model with standard tie-breaking rule. The 

second model was proposed by B. Klose and D.Kovenock (2013). 

 

In the thesis, the first price sealed bid auction with interdependent valuations is 

considered.  First, a number of sets of sufficient conditions in which the pure 

strategy Nash equilibrium exists are found. Then conditions under which mixed 

strategy equilibria exist are studied. To facilitate studying the problem, a 

classification of different types of valuations of players is developed and then 

equilibrium existence conditions are given for each case. 

 

In the thesis, we also consider the model where all players know their own 

valuation and externalities and have some beliefs about the other players’ 

valuations and externalities. Thus, every player observes his or her own 

valuation and externalities before he/she bids only. The functional form of a 

symmetric mixed strategy Nash equilibrium is found. 
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C h a p t e r  4  

PURE STRATEGY NASH EQUILIBRIUM 
 

Let us consider the first price sealed bid auction with identity-dependent 

externalities. To simplify mathematical derivations let us consider the case with 

three bidders. The method can be easily extended to the case of n bidders. 

Denote the player’s preferences as 

(v1, h1
2, h1

3), (v2, h2
1 , h2

3), (v3, h3
1, h3

2).  

Assume that players bid b1, b2, b3, respectively. Now let us consider all possible 

allocations of the bids and find the conditions for existing pure strategy Nash 

equilibrium in this model. Remember, that a situation is in equilibrium if 

nobody can deviate with profit. 

I. b1 ≠ b2 ≠ b3 

There is no pure strategy equilibrium. Assume that b1 > b2 > b3. The first 

player can always deviate to b1
′ ∈ (b2, b1). She still wins the game, but her 

utility will be higher. So, it is better to deviate. 

II. b1 = b2 ≠ b3 

If b3 > b1 = b2, it is better for player 3 to deviate to some b3
′ ∈ (b1, b3). 

If b1 = b2 > b3 the players’ utilities according to the model are: 

𝑈1 =
1

2
(𝑣1 − 𝑏1) +

1

2
ℎ1

2  

𝑈2 =
1

2
(𝑣2 − 𝑏2) +

1

2
ℎ2

1 
 

𝑈3 =
1

2
ℎ3

1 +
1

2
ℎ3

2 
 

Now let us consider all possible deviations for every player and find the 

conditions in which these deviations are not profitable. 
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If player 3 deviates to [0, b1) nothing changes for him. 

If player 3 deviates to b1:  

U3
′ =

1

3
(v3 − b1) +

1

3
h3

1 +
1

3
h3

2  

It should be that U3 ≥ U3
′ .So, 

1

2
h3

1 +
1

2
h3

2 ≥
1

3
(v3 − b1) +

1

3
h3

1 +
1

3
h3

2 (4.1) 

If player 3 deviates to (b1, +∞): 

U3
′′ = v3 − (b1 + ε)  

It should be that U3 ≥ U3
′′.So, 

1

2
h3

1 +
1

2
h3

2 ≥ v3 − b1 (4.2) 

If player 2 deviates to [0, b2): U2
′ = h2

1 .  

It should be that U2 ≥ U2
′ . So, 

1

2
(v2 − b2) +

1

2
h2

1 ≥ h2
1 (4.3) 

If player 2 deviates to (b2, +∞):  

U2
′′ = v2 − (b2 + ε).  

It should be that U2 ≥ U2
′′. So, 

1

2
(v2 − b2) +

1

2
h2

1 ≥ v2 − b2 (4.4) 

It is possible to write similar conditions for the first player:  

1

2
(v1 − b1) +

1

2
h1

2 ≥ h1
2 (4.5) 

1

2
(v1 − b1) +

1

2
h1

2 ≥ v1 − b1 (4.6) 

Notice that if inequalities (4.1) – (4.6) hold, nobody wants to deviate. 

It is easy to find from (4.1) and (4.2) that  

v3 −
1

2
(h3

1 + h3
2) ≤ v1 − h1

2 (4.7) 



 

13 
 

from (4.3) and (4.4) that 

b2 = v2 − h2
1  

and from (4.5) and (4.6) that 

b1 = v1 − h1
2  

However, in the case first and second players should bid the same amount. So, 

v1 − h1
2 = v2 − h2

1 (4.8) 

Thus, if conditions (4.7) and (4.8) hold, there are the pure strategy Nash 

equilibriums, such that player 1 bids v1 − h1
2, player 2 bids v2 − h2

1 , and player 

3 bids any number from [0, v1 − h1
2). 

Notice that conditions (4.7) and (4.8) are sufficient but not necessary. In order 

to find necessary conditions it is needed to consider one more case. 

III. b1 = b2 = b3 

The utility for first player in this case is  

U1 =
1

3
(v1 − b1) +

1

3
h1

2 +
1

3
h1

3  

If player 1 deviate to [0, b1):  

U1
′ =

1

2
h1

2 +
1

2
h1

3 
 

It should be that U1 ≥ U1
′ . So, 

1

3
(v1 − b1) +

1

3
h1

2 +
1

3
h1

3 ≥
1

2
h1

2 +
1

2
h1

3 (4.9) 

If player 1 deviate to (b1, +∞):  

U1
′′ = v1 − (b1 + ε)  

It should be that U1 ≥ U1
′′. So, 

1

3
(v1 − b1) +

1

3
h1

2 +
1

3
h1

3 ≥ v1 − b1 (4.10) 
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It is easy to find from (4.9) and (4.10) that  

b1 = v1 −
1

2
(h1

2 + h1
3) (4.11) 

Since the allocation is symmetric it is possible to write the similar conditions for 

player’s 2 and player’s 3 bids. So, 

b2 = v2 −
1

2
(h2

1 + h2
3) 

 

𝑏3 = 𝑣3 −
1

2
(ℎ3

1 + ℎ3
2) 

 

Remember, that b1 = b2 = b3. 

 

Thus, the condition in which the pure strategy Nash equilibrium exists in this 

case is:  

v1 −
1

2
(h1

2 + h1
3) = v2 −

1

2
(h2

1 + h2
3) = v3 −

1

2
(h3

1 + h3
2) (4.12) 

Therefore, it is possible to conclude that the pure strategy Nash equilibrium in 

the considered model exists if and only if conditions (4.7) and (4.8) hold or 

condition (4.12) holds. Notice that in pure strategy Nash equilibrium at least 

two players should bid the same amount. 
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C h a p t e r  5  

MIXED STRATEGY NASH EQUILIBRIUM 
 

In this part let’s consider the same model of the first price sealed bid auction 

with identity dependent externalities. We would try to analyze not only pure 

strategy equilibrium, but also mixed strategy Nash equilibrium in this model. 

Remember that (v1, h1
2, h1

3), (v2, h2
1, h2

3), (v3, h3
1 , h3

2) is the set of valuations. 

Let us pi
j
 is the maximum willingness to pay for player 𝑖 in order to win rather 

than player j wins. It means that if player 𝑖 bids pi
j
 he is indifferent between 

winning and losing to player j. Thus, pi
j
 should be equal to (vi − hi

j
). In order 

to better understand this important concept let us consider some numerical 

example. Let’sv1 = 10, h1
2 = −5, h1

3 = −3. 

 

According to the notation, it means that the first player earns 10 − b1 if he bids 

b1 and wins the auction, −5 if the second player wins, and −3 if player 3 wins. 

In this case p1
2 = 15, p1

3 = 13. Really, if player 1 bids 15 and wins, he earns 

10 − 15 = −5. If he lose for the second player he earns h1
2, which is the same 

−5. Thus, if he bids 15 he is indifferent between losing for the second player 

and wining. 

 

Now let’s consider the set of the highest pi
j
, 

S ≔ {pi
j
|pi

j
= max

k,l
pk

l }  

Notice that all elements in S are equal to the maximum willingness to pay 

among all participants. 

Let us analyze all possible cases: 

1. ∃! i: pi
j

∈ S 
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It means that there is only one the highest pi
j
. 

2. ∃i, j: pi
j

∈ S, pj
i ∈ S.  

It means that there exist two players who dislike each other at the same highest 

level. 

3. ∃i, j:  pi
j

∈ S,  pj
k ∉ S for all k. 

It means that there is some player who are ready to pay the highest amount to 

prevent some other player to win but nobody dislike him at this level. 

4. ∀pj
i ∈ S ∃k ≠ i:  pj

k ∈ S.  

It means that there is some cycle with length more than 2. For example, the first 

player dislike the second player, the second player dislike the third player and 

the third player dislike the first one at the same level. 

The main result is that in cases 1, 2, and 3 the mixed strategy Nash equilibrium 

always exists. The proof of this fact is quite complex and constructs an example 

of equilibrium in each case. 

 

Case 1. ∃! i: pi
j

∈ S.  

In this case the following set of strategies will be the mixed strategy equilibrium: 

Player 𝑖 bids pi
j

− ε, player j uniformly randomize between pi
j

− ε − δ and  

pi
j

− ε, and all other players bid zero. 

 

Notice that in this case player 𝑖 always wins the auction and her utility will be 

Ui = vi − (pi
j

− ε) = vi − pi
j

+ ε  

For some little ε, pi
j

− ε is higher than pj
i, and thus there is no sense for player j 

to increase her bid. Now we need to demonstrate the appropriate δ, such that 

there is no sense for player 𝑖 to decrease her bid. If player 𝑖 decrease her bid to 
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pi
j

− ε − σ, σ ≥  δ, than player j wins for sure and the utility for player 𝑖 in this 

case is hi
j
, which is less than vi − pi

j
+ ε. 

If player 𝑖 decrease her bid to pi
j

− ε − σ, σ <  𝛿 than her utility will be 

Ui
∗ = (vi − (pi

j
− ε − σ))

δ − σ

δ
+ hi

j σ

δ
 

 

The following condition should holds for every σ > 0: Ui ≥ Ui
∗.  

In this case, there is no sense to deviate for any player and it means that the set 

of strategies is the mixed strategy Nash equilibrium. 

vi − pi
j

+ ε ≥ (vi − (pi
j

− ε − σ))
δ − σ

δ
+ hi

j σ

δ
 

 

 

vi − pi
j

+ ε

≥
viδ − pi

j
δ + εδ + σδ − viσ + pi

j
δ − εσ − σ2 + viσ − pi

j
δ

δ
 

 

 

σ2 − σδ + σε ≥ 0 ⇒ δ ≤ ε  

It means that for every ε > 0, such that pi
j

− ε is higher than the highest 

element pk
n ∉ S, and for every δ > 0, δ ≤ ε the following set of strategies is a 

mixed strategy Nash equilibrium: 

Player 𝑖 bids pi
j

− ε, player j uniformly randomize her bid on 

(pi
j

− ε − δ, pi
j

− ε), and other players bid zero. 

 

Case 2. ∃i, j: pi
j

∈ S, pj
i ∈ S.  

In this case, the following set of strategies is the mixed strategy Nash 

equilibrium: player 𝑖 bids pi
j
, player j bids pj

i, other players bid zero. Notice that 
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in this case the probability of winning for both players 𝑖 and j is 
1

2
 and for any 

other player is zero. The utility for player 𝑖 in this case is 

Ui =
1

2
(vi − pi

j
) +

1

2
hi

j
= hi

j
 

 

 

If she decrease her bid, she lose for sure to player j and her utility is the same 

hi
j
. If she increase her bid, she wins for sure and her utility is 

vi − (pi
j

+ ε) = vi − pi
j

− ε < hi
j
  

It means that there is no sense to deviate for player i. Similar arguments hold 

for player j. Notice that other players also cannot benefit from changing their 

bid, because their willingness to pay are not higher than pi
j
. Thus, the situation 

is in equilibrium. 

 

Case 3. ∃i, j:  pi
j

∈ S,  pj
k ∉ S for all k. 

In this case the following set of strategies is the mixed strategy Nash 

equilibrium: player 𝑖 bids pi
j

− ε, player j uniformly randomize her bid on 

(pi
j

− ε − δ, pi
j

− ε), where ε > 0 is such that pi
j

− ε ≥ max
k

pk
i ,  and 

δ < 𝜀, and all other players bid zero. 

 

In this case, player 𝑖 wins for sure and enjoy utility 

𝑈𝑖 = vi − pi
j

+ ε  

Notice that for player 𝑖 the situation is the same as in the case 1, and thus she 

cannot benefit from changing her bid. All other players also could not deviate 

with profit, because their willingness to pay in order to win rather than player 𝑖 

wins is lower than pi
j

− ε. It means that the proposed set of strategies is the 

mixed strategy Nash equilibrium. 
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Case 4. ∀pj
i ∈ S ∃k ≠ i:  pj

k ∈ S.  

The main result in this case is that there is no standard equilibrium. It means 

that there is no equilibrium than one players use pure strategy and other player 

randomize little bit less than this amount. Thus there is no equilibrium such that 

one player wins for sure. Let us prove this fact. 

 

Let us assume that player 𝑖 bids some amount 𝑏𝑖 and wins for sure. There is 3 

possible cases: 

1. 𝑏𝑖 > vi − pj
i 

2. 𝑏𝑖 = vi − pj
i 

3. 𝑏𝑖 < vi − pj
i 

Let us consider each of them and prove that it is not an equilibrium. 

 

In the first case, there is an incentive for player 𝑖 to decrease her bid. Now she 

earn:  

𝑈𝑖 = vi − 𝑏𝑖 < pj
i 

However, if she bids vi − pj
i than her utility will be at least pj

i. It means that 

player 𝑖 could deviate with profit. 

 

In the second case, the utility for player 𝑖 is equal to 

𝑈𝑖 = vi − 𝑏𝑖 = pj
i 

According to the assumption, the first player wins for sure, which means that 

no other players bid vi − pj
i. It means that the first player could decrease her 

bids and still has some chances to win. So, if she loses her utility will be at least 

pj
i. However, if she wins she will pay less than vi − pj

i. We could conclude that 

the expected utility for player 𝑖 will be higher in the case of deviation. 
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In the third case, let us consider utility for player 𝑧, who do not like player 𝑖. If 

player 𝑖 wins for sure, than the utility for player 𝑧 will be: 

𝑈𝑧 = 𝑝𝑧
𝑖 = 𝑝𝑖

𝑗
 

If player 𝑧 bids some amount between 𝑏𝑖 and vi − pj
i than the utility for this 

player will be:  

𝑈𝑧
∗ > vi − (vi − pj

i) = 𝑝𝑖
𝑗
 

We could see that in this case, there is a player who can profitable deviate. 

Thus, this situation is not in equilibrium. 

 

As we show above, there is no such equilibrium where some player wins for 

sure. The existence of some other non-standard types of equilibria could be 

studied in future research. 
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C h a p t e r  6  

AUCTIONS WITH INCOMPLETE INFORMATION 
 

In this part, let us consider the same model of the first price sealed bid auction 

with identity dependent externalities. Remember, that in this model, every 

player knows all valuations and externalities. Now we are going to consider 

slightly different model. In contrast to the previous part, every player knows 

only the distribution functions of the opponents’ valuations and externalities. 

Let us assume that for every player the own valuation has uniform distribution 

from one to two, and externalities have uniform distribution from zero to one. 

Thus, we assume that in the case of winning player always earns more 

compared to the case of losing, which is logical. Strategy in this model is some 

function from player’s valuation and externalities to player’s bid. Let us find a 

symmetric equilibrium in this model, because it is a good point to start. It 

means that every player should use the same strategy to identify their bid. For 

simplicity, let us consider the case with three players. 

 

Let us denote the player’s preferences as  

(v1, h1
2, h1

3), (v2, h2
1, h2

3), (v3, h3
1 , h3

2)  

According to the assumptions: 

vi ∊ U[1,2], hj
k ∊ U[0,1], i, j, k ∊ {1,2,3}, j ≠ k  

Let us assume that β(∙,∙,∙) is a symmetric equilibrium. Thus, 

β: (v1, h1
2, h1

3) → b1  

is a first player’s bid. 

 

Notice that the first player wins only if he bids the highest amount. In this case 

he earns (v1 − b1). If he loses the auction, his expected payoff is  
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1

2
(h1

2 + h1
3) by symmetry, because the probability for player 1 to lose to player 

2 is the same as to lose to player 3. The probability of losing is 

P(b1 < max(b2, b3))  

Thus, the expected payoff for player 1 is 

E1(b1) = (v1 − b1)P(b1 > max(b2, b3))

+
1

2
(h1

2 + h1
3)P(b1 < max(b2, b3)) 

 

 

Notice that  

P(b1 = max(b2, b3)) = 0,  

because the player use mixed strategy and the probability that the bid will be 

equal to some fixed amount is equal to zero. 

Let us rewrite: 

E1(b1) = (v1 − b1)P(b1 > max(b2, b3)) + 

+
1

2
(h1

2 + h1
3)(1 − P(b1 > max(b2, b3))) 

(6.1) 

 

E1(b1) = (v1 −
1

2
(h1

2 + h1
3) − b1) P(b1 > max(b2, b3))

+
1

2
(h1

2 + h1
3) 

(6.2) 

Remember that player 1 chooses b1to maximize E1(b1), which is his expected 

payoff. Notice that for any (v1, h1
2, h1

3) and (v1
∗, h1

2∗
, h1

3∗
) such that 

(v1 −
1

2
(h1

2 + h1
3)) = (v1

∗ −
1

2
(h1

2∗
+ h1

3∗
)) 

 

the optimal b1 should be the same. Thus, the best bid for player 1 depends only 

on the 

(v1 −
1

2
(h1

2 + h1
3)) 
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In this case it is needed to find the symmetric equilibrium in the following form: 

β: (v1 −
1

2
(h1

2 + h1
3)) → b1 

 

which significantly simplifies the problem, because now the domain of the 

function is the set in R, not in R3. 

Let us denote 

ui ≔ vi −
1

2
(hi

j
+ hi

k), i, j, k ∊ {1,2,3} 
 

Every player knows only his or her own u. This variable has some distributed 

function F, which is possible to find, because the distribution functions for  

vi, hi
j
, and hi

k , i, j, k ∊ {1,2,3} are known. Now it is possible to implement the 

method described by P. Monteiro (2006).  

 

Let us consider the general case and then find the equilibrium in the specific 

problem. Let’s Yn−1is a maximum of (n − 1) independently distributed 

variables u2, … , un. Thus, the distribution function of Yn−1 is 

G(u) = Fn−1(u)  

and the density of G(u) is 

g(u) = (n − 1)Fn−1(u)f(u)  

where f(u) is a density of F(u). 

 

1. Let us prove that β(0) = 0. 

Notice that β(0)could not be negative, because bids should be also positive or 

zero. If β(0) > 0 than 

β(ε) > 𝛽(0) > 0, for any ε > 0. 

Thus, for some ε: 

(ε − β(ε)) < 0  
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P(β(ε) > 𝑚𝑎𝑥(b2, … , bn)) > 0  

So, 

E1(β(ε)) < E1(0)  

It means that if player bids zero, the expected payoff is higher compare to the 

case if he or she bids β(ε). Contradiction, because β(∙) should be an 

equilibrium strategy and maximize the expected payoff. 

 

2. Remember that 

E1(b1) = (u1 − b1)P(b1 > max(b2, b3)) + C  

where C is a constant. Let us rewrite it with new variables: 

E1(b1) = (u1 − b1)P(Yn−1 ≤ β−1(b1)) + C = (u1 − b1)G(β−1(b1)) + C 

The necessary conditions for the equilibrium strategy is the following: 

d(E1(b1))

db1
= 0. 

 

Let us take a derivative and solve the following differential equation: 

−G(β−1(b1)) +
(u − b1)g(β−1(b1))

β́(β−1(b1))
= 0, 

 

G(β−1(b1))β́(β−1(b1)) = (u − b1)g(β−1(b1)),   b1 = β(u)  

G(u)β́(u) = (u − β(u))g(u) ⇔ G(u)β́(u) + β(u)g(u) = ug(u)  

Thus, 

(G(u)β(u))́ = ug(u).  

In order to solve this equation, let us integrate it: 

G(u)β(u) = ∫ yg(y)dy
u

0

 ⇒ 
 

𝛽(𝑢) =
1

𝐺(𝑢)
∫ 𝑦𝑔(𝑦)𝑑𝑦

𝑢

0

 (6.3) 
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Remember, that β(∙) is a symmetric equilibrium strategy. Condition (6.3) is a 

necessary condition for that. It is easy to show that every function which 

satisfies (6.3) is a symmetric equilibrium in the model. 
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C h a p t e r  7  

CONCLUSION 

 

This theoretical research has been made to expand knowledge about auctions 

with interdependent valuations. Studying of this type of auctions could help 

better modeling a lot of real life situation, because it is very common that for 

someone who loses the auction it is important who the winner is. All pay sealed 

bid auction was considered by Klose and Kovenok (2013), that why we decided 

to focus on the first price sealed bid auctions. There are three main results 

obtained in this research. 

 

A number of the sets of necessary and sufficient conditions under which a pure 

strategy Nash equilibrium exists in the first price sealed bid auction with 

complete information in the presence of externalities were found. This result is 

presented in section 4. 

 

Also, the conditions under which a mixed strategy Nash equilibrium exists in 

the first price sealed bid auction with complete information were obtained. To 

fully examine this type of auction it is needed to consider the case 4 from 

section 5. It could be an opportunity for future research. 

 

In addition, we studied the case of incomplete information and found the 

conditions in which symmetric mixed strategy Nash equilibrium exists. The 

next step in this direction could be a description of all asymmetric equilibria in 

the model. 
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