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Abstract

MODELING THE BEHAVIOR OF
PARTICIPANTS ON WEBMONEY

EXCHANGER MARKET

by Igor Lytvynenko

Thesis Supervisor Rostyslav Hryniv

This study proposes an approach to evaluating and comparing trader strategies

on exchange market that uses Central Limit Order Book mechanism of clearing

orders. The methodology is based on Monte Carlo simulations of the market

with the injected trader, who is implementing some strategy of exchange. Sim-

ulation results summarize historical information available from the market and

extend trader’s information set.

All the numerical analysis is based on the data collected for WebMoney Ex-

changer exchange market. It was shown that nonhomogeneous Poisson process

adequately models order flows. In addition to that, significant dependence be-

tween order sizes, rates and current market state have been observed in the

data. As a result, using the revealed facts, simulation model of the WebMoney

Exchanger market was built for one exchange pair (WMR↔WMZ). This sim-

ulation as an example was traced throughout the work. Comparing outcome

distributions among different strategies, analyst can prefer one strategy over

another. Such a possibility can be useful for developing and testing strategies

for algorithmic trading, which is becoming more and more popular way to work

with the markets nowadays.
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Glossary

Central Limit Order Book (CLOB) is a trading method that matches

customer orders (buy and sell ones) on a “price time priority” basis. Customer

is free to put a limit order into the book and wait or put a market order and

match the best limit order already available in the book.

Limit order is an order to buy or sell at a specific price or better. A buy

limit order can only be executed at the limit price or lower, and a sell limit

order can only be executed at the limit price or higher. A limit order is not

guaranteed to be executed.

Market order is an order to buy or sell immediately at the best available

price. The price at which a market order will be executed is not guaranteed.

WMU is an equivalent for UAH issued by WebMoney payment system.

WMR is an equivalent for RUR issued by WebMoney payment system.

WMZ is an equivalent for USD issued by WebMoney payment system.
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Chapter 1

Introduction

This research proposes an approach to evaluating and comparing trader strate-

gies on exchange market that uses central limit order book mechanism of clear-

ing orders. The methodology is based on Monte Carlo simulations of the market

with the injected trader, who is implementing some strategy of exchange. These

simulations give us distribution of the amount of destination currency that can

be received after the exchange. Such result summarizes historical information

available from the market and extends trader’s information set. Comparing

distributions among different strategies, analyst can prefer one strategy over

another. Such a possibility can be useful for developing and testing strategies

for algorithmic trading, which is becoming more and more popular way to work

with the markets nowadays.

All the numerical analysis is based on the data collected for WebMoney Ex-

changer exchange market. This is relatively small but alive1 exchange market.

One can use this market to exchange currencies issued by WebMoney2 payment

system. The results of this work can help to make transactions in a reasonably

efficient way without continuous manual monitoring of the market.

The way this market works is very similar to a stock exchange markets. Central

1For eye-ball evaluation of its size consider the following statistics: 2.4 million WMZ were
exchanged in pair WMZ-WMR, and 0.24 million WMZ in pair WMZ-WMU for one working
day (05.12.2012, source: https://wm.exchanger.ru).

2WebMoney is an internet payment system widely known among internet users of post
Soviet Union countries. For almost 15 years already this system has been issuing its virtual
currencies, which are almost freely exchangeable with their originals. For example, it issues
WMZ as a surrogate of US dollar, WMU as a surrogate of Ukrainian hryvnia. Users of this
system can make payments in these currencies through the internet. They can buy goods
in internet shops or order some specific services (hosting, domain registration, advertisement
and other). This system is free to use, but charges transaction costs. WebMoney official
statistics reports that during 2011 the system has processed 130 million transactions with total
amount up to 13 billion USD (source: http://www.webmoney.ru/eng/about/statistics/

stat_years.shtml).

1

https://wm.exchanger.ru
http://www.webmoney.ru/eng/about/statistics/stat_years.shtml
http://www.webmoney.ru/eng/about/statistics/stat_years.shtml


Limit Order Book mechanism with different modifications is used at the NYSE,

Nasdaq, Tokyo Stock Exchange, etc.

This mechanism works as follows. Suppose one wants to exchange WMU3 to

WMZ4. In order to do this he can:

∙ Buy one or several existing orders on the market and make this exchange

immediately (put market order).

∙ Put his own order with desirable exchange rate and wait until somebody

buys it (put limit order).

∙ Change exchange rate of the existing limit order.

∙ Buy one or several limit orders from the opposite side of the market for

own limit order (i.e. convert limit order to market order).

WebMoney Exchanger does not charge any commission, but WebMoney takes

0.8% commission for every transaction itself. And it is paid only once for

exchange, regardless the strategy used. So, in this case transaction cost have

no influence on trade’s decision. That is why, in this research we can assume

that there are no transaction costs that should be taken into account while

choosing strategy for the exchange.

This procedure may look strange for an ordinary user who is used to using

usual exchange desk with fixed buy and sell prices, but it should be familiar

for users that have experience working with stock markets.

For those who consider playing on exchange market too complicated, there

are supplementary services that offer a possibility to perform exchange with

predefined rates. But on WebMoney Exchanger one can usually achieve better

rates.
3Equivalent of Ukrainian hryvnia.
4Equivalent of US dollar.
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The rest of the work is organized as follows. In chapter 2 a reader can find the

review of the related literature. Chapter 3 describes simulation setup and its

methodology. Dataset and its features are shown in chapter 4. Order flows and

trader choice calibration details can be found in chapter 5 (outlined derivation of

maximum likelihood estimator of the rate of nonhomogeneous Poisson process

can be found in appendix A). Particular case simulation results are reported in

chapter 6.
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Chapter 2

Literature review

The first notable empirical paper devoted to limit order book is written by Biais

et al. (1995). The authors analyze 6 trading days in June/July 1991 and 19

trading days in October/November 1991 of Paris Bourse stock exchange. They

describe different insights on supply and demand formation in such markets

and make first observations of the specific features of limit order book.

Subsequent literature on limit order book system can be divided into two main

groups: empirical studies and models building of limit order book. First we

will consider empirical literature.

Relative price. Zovko and Farmer (2002) consider near two million orders

from London Stock Exchange. They merge data from 50 stocks and analyze

relative limit price (difference between log limit price and log of best price

available). The observation is that the distribution of relative limit price (in

both buy and sell orders) has power law tails with exponent close to 1.5. Similar

results have been obtained by Bouchaud et al. (2002) on Paris Bourse stock

exchange market.

Order size. Maslov and Mills (2001) report that size distribution of mar-

ketable orders (limit orders that have been sold) has power low tails (with

exponent 2.4 ± 0.1). This result was obtained using high-frequency NASDAQ

data.

Limit order cancelations. On many markets agents cannot just change

the price of theirs limit orders. In those cases it is a common action to cancel

the old limit order and create a new one. Hasbrouck and Saar (2001) report

4



that roughly 25% of limit orders were cancelled during two seconds and near

40% during 10 seconds after submitting (their findings are based on 300 largest

equities on NASDAQ, 1 October 1999 – 31 December 1999). Thus cancelations

are important issues to model.

Conditional events. Order size, relative price, spread, volatility and other

characteristics of the limit order and of the market can be related to each

other. But, surprisingly, some studies report evidence of independence of some

of these events. For example, Gu et al. (2008) state that there is evidence

that the relative price of new limit order is independent of spread and volatility

of the market (data for Shenzhen Stock Exchange, 2003). On the contrary

Lo and Sapp (2010) provide evidence that in more volatile environment order

sizes are lower (data is taken from the different exchange markets for 1997 and

2005 years). In addition Gould et al. (2011) state that there is evidence that

arrival rate of order heavily depends on events in the market in the closest five

minute window. Biais et al. (1995) report that cancelations rate increases after

a matching on either side of the market. This whole research puts warnings

and pays attention to independence assumptions in the models.

Heavy-tailed returns. Gould et al. (2011) state that mid-price returns

have distribution with tails that are heavier than normal. Despite that these

distributions are different in different timescales, there is evidence that in the

shortest timescale returns distribution tails can be approximated by the power

law. Heavy tails of such returns are important feature of the market, which

leads to underestimating risks if one uses normal distribution instead.

Autocorrelation of returns. This autocorrelation is present only in short

period of time. In longer period it does not persist. Stanley et al. (2008) report

that autocorrelation function of the price decreases exponentially and after 20
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minutes turns to the noise. Gould et al. (2011) also support this claim and

state that this property is observed in different markets.

All the above facts are well studied in the literature and verified for different

markets (with different level of success). They do not pretend to be real truth

in all the cases, but they are used for reality check of different market models.

Now we turn to the discussion of theoretical models. All developed limit market

models can be divided into three groups (Gould et al. 2011): models with

perfect rational agents, zero-intelligence models and agent-based models.

Consider several models from different groups.

Roşu (2009) presents the first (according to the author) dynamic model of

order-driven market that allows agents freely modify and cancel limit orders.

This model has rational but heterogeneous agents. The time is continuous and

the horizon is infinite. There is only one asset in the economy and it does not

yield dividends. Sellers and buyers arrive randomly, put their limit or market

order on one unit of asset and, after matching it, leave the market. Also there

is an assumption that all agents have exogenous incentives to trade. Once limit

order is placed, it can be cancelled or changed. Traders have different waiting

costs, thus they can be patient and impatient.

Rosu model generates the following predictions: first, higher trading activity

leads to smaller spread and lower price impact; and second, orders can cluster

away from the spread and build hump-shaped order book.

Cont et al. (2010) provide zero-intelligence model, that according to the authors

can be easily estimated from the data and replicates various empirical market

features. This model is based on continuous-time Markov process, whose state
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describes the size of queue of orders to be executed for each price. Equally

sized orders arrive according to Poisson processes with different intensities for

different prices. This paper uses data from Tokyo Stock Exchange Market for

numerical experiments. The main advantage of this model is the fact that it is

relatively analytically tractable, thus its simulations are relatively simple and

fast.

Lukov et al. (2012) describe one more dynamic stochastic model of the order

book market. This model is designed to be able to simulate famous market

phenomena appearing around the moment of expected issue of new information.

The core of this model is also the Markov chain that describes state of the book

and additionally two parameter influencing order flows. This allows to model

changing flows intensities.

Cont continues to work in this field. In article (Cont and De Larrard 2013) the

authors try to include order cancelations into the model.

Huang (2012) extends Cont et al. (2010) and allows to drop annoying assump-

tion of equal order sizes.

As it can be seen, recent achievements in modeling limit order book (Cont et al.

(2010); Lukov et al. (2012); Cont and De Larrard (2013); Huang (2012)) are

based on standard tools of queuing theory and its extensions. The cornerstone

of those models are continuous time Markov processes with special state spaces.

Complex state space and Markovian property force the authors to impose very

strong assumptions and restrictions on their models. Some of them are as

follows:

∙ Inter-arrival times are independent and identically distributed (Lukov

et al. (2012) consider model, where the inter-arrival times are indepen-

7



dent, but not identically distributed).

∙ Order sizes are equal (Huang (2012) drops this assumption).

∙ No cancelations (Cont and De Larrard (2013) tries to drop it).

∙ No changing rates of limit orders.

Moreover, Markov processes have limited ability to model intelligent behavior

of a trader.

All these restrictions (even if some of them are dropped) can make predictions

and implications almost useless.

This work extends considered empirical literature with evidence from Web-

Money Exchanger exchange market and extends considered theoretical litera-

ture with experience of applying Monte-Carlo simulations for analysing Central

Limit Order Book Market.
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Chapter 3

Methodology

Dynamics of a limit order book can be studied by Monte Carlo simulation. On

the one hand, it is simpler1 to introduce as many features as needed, but on

the other hand, models constructed this way cannot be studied analytically and

thus require careful calibration in order to produce meaningful results.

To avoid confusion, we abstract away from a particular exchange pair and refer

to the one side of the market as “side A” and the other side of the market as

“side B”. If, for example, on side A we have limit orders that requires WMZ

and offers WMR, then on side B limit order will require WMR and offer WMZ.

For a stock market, side A can contain sell orders while side B consists of buy

orders or vice-versa.

Generate limit orders flow  
(side A)  Limit order 

Market order 

Limit order 

Market order 

Limit 
order 
book 

Simulate decision 

Generate market orders flow  
(side B)  Simulate decision 

Generate market orders flow  
(side A)  Simulate decision 

Generate limit orders flow  
(side B)  Simulate decision 

,  

,  

 

 

Figure 3.1. Simulation scheme. At the beginning, four order flows are generated.
Then in the order of appearance every order chooses its parameters (amount, rate)
taking into account current book state and goes into the book for processing.

On the figure 3.1 the schematic representation of the simulation model is shown.

1If we compare to modeling using Markov chains.
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At the beginning there is an initial order book state with some orders. After

that, all four flows start to generate orders according to their calibrated random

processes. In the order of appearance each of those orders chooses its parame-

ters (amount, rate) taking into account current book state. Then orders come

to the book for processing. After some time of such simulation, one will cre-

ate all the dynamics of the book and its final state. Repeating these steps as

many times as necessary, one will obtain a sample of book states with required

characteristics, and theirs empirical distributions.

So, if one wants to check some strategy of exchanging, he can put his limit

order at the beginning of the simulation, simulate his strategy together with the

market, and, finally, obtain the results of strategy application (for example, the

amount of target currency after exchange). Repeating these simulations, one

will find distribution of the amount of target currency, conditional to applying

particular strategy.

In this model there are two major objects to parameterize:

∙ Order flows.

∙ Trader choice.

It is natural to describe every order flow as a sequence of random events. Usu-

ally such events sequences are modeled by Poisson process (at least this is the

first to by tried). But, unfortunately, in our case it will not work. Traders’

activity changes over time and thus average events count per unit of time can-

not be assumed constant. That’s why we use extension of this process in this

work. Input order flows are modeled as Nonhomogeneous Poisson processes

with piecewise linear rate function. Such approach allows to capture changes

in traders’ activity over time. More details about calibration of these flows are

described in chapter 5 and appendix A.
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When we have rate functions of input flows calibrated, it is easy to generate

as many realizations of these flows as required. But every of this event should

be assigned with order parameters. Limit order requires to have its size and

rate. Market order requires only size. It is logical to assume that these param-

eters depend on current order book state and on unobservable factors. Exact

specifications of these relationships are described in chapter 5. Eventually, or-

ders’ sizes and rates are assigned taking into account the current state of the

book and drawing disturbance from empirical distribution of the residuals of

corresponding models.

11



Chapter 4

Data

4.1. Data description

Available dataset. WebMoney Exchanger shows currently available bids on

the market. There is a possibility to take snapshots of these lists, for example,

every minute. Comparing adjacent lists we can reconstruct a lot of events that

happened on the market. As a result we can build the dataset close to ideal

but with some missing events and some incorrectly interpreted ones (this can

happen when the bid disappeared, for example; in this case it is not always

clear whether it was bought or cancelled by the owner).

Strictly speaking, we collect the following data:

∙ Snapshots of lists with active limit orders (only top-50 are available).

∙ Daily statistics1 with trade amount and average rates.

Analyzing changes in consecutive snapshots, we can capture the following

events:

1. New limit order has appeared.

2. Limit order changed its rate.

3. Limit order changed its amount.

4. Limit order has disappeared

1This information is updated every hour. Thus we can calculate hourly statistics observing
changes in these “daily” numbers.
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Unfortunately, any of these events can be interpreted unambiguously (except

changing rate). New limit order can appear in the following circumstances:

1.1. New limit order is created.

1.2. Some limit order disappeared in the past due to exiting from the top-50

and has just re-entered it again.

Changing of limit order amount also can be treated in several ways:

3.1. The limit order has been partially matched.

3.2. Several limit orders have been merged.

If some limit order disappeared, we can have the following reasons for that:

4.1. This limit order has been cancelled.

4.2. This limit order has been matched.

4.3. This limit order has been converted to market order.

4.4. This limit order has been joined with some other one;

4.5. This limit order has left top-50 list.

Unfortunately, it is impossible to distinguish between all these events in deter-

ministic way. But some conclusions can be made.

Cases 1.2 and 4.5 can be distinguished considering all the history2 of a particular

order. If the order disappeared and later we can see it in the future, we can

say that the considered order was pushed out from top-50 list. So, having

case 1.2 singled out, we can conclude that the rest new orders were just created

(case 1.1).

2We have id for every order, so we can construct observed history of each order.
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Table 4.1. Snapshots series that were successfully collected with gaps no longer than
30 minutes. Series that are shorter than 10 days are omitted.

Begin time End time # of snapshots # of days

2011-01-12 02:23 2011-02-15 17:19 24547 34.6

2011-02-15 17:51 2011-02-28 08:41 8951 12.6

2011-02-28 09:15 2011-03-13 06:55 9289 12.9

2011-03-13 10:46 2011-03-27 02:59 9874 13.6

2011-05-17 16:29 2011-05-28 10:53 7537 10.7

2011-06-28 17:45 2011-07-08 18:29 7044 10.0

2011-10-21 00:28 2011-11-07 18:25 12351 17.7

2011-11-07 19:04 2011-11-20 11:13 8934 12.6

2011-11-20 15:45 2011-12-14 10:09 16693 23.7

2011-12-14 11:43 2011-12-26 14:07 8524 12.1

2011-12-30 21:17 2012-01-11 11:37 8075 11.5

2012-04-16 22:45 2012-05-12 16:29 18089 25.7

2012-06-02 08:33 2012-06-22 03:51 14169 19.8

2012-06-23 22:14 2012-07-04 11:27 7371 10.5

2012-08-07 13:45 2012-08-20 16:09 8597 13.0

2012-08-20 16:47 2012-09-13 11:57 15941 23.7

2012-09-21 15:43 2012-10-16 00:21 16784 24.3

2012-10-28 21:57 2013-01-05 23:15 47731 69.0

2013-01-14 22:33 2013-02-01 18:15 12257 17.8

Cases 3.1 and 3.2 could be distinguished by paying attention to the change in

the order amount. If orders have been merged, the amount of the order should

increase, but in case 3.1 this amount should decrease.

The most complicated task is to distinguish between cases 4.1, 4.2 and 4.4.

Consider case 4.4 first. For a fixed period of time the number of events of

type 3.2 and 4.4 should be equal. So, for each case 3.2 we can try to find the

corresponding disappeared order of type 4.4. In ideal situation the amount

of those orders should be equal, but if we have overlapping event 3.1, their

numbers will be different.

Cases like 4.3 can be captured considering both sides of the market. If we have

sold or partially sold one or several orders of total amount equal to that we

14



Table 4.2. Distribution of identified events. Calculated using all events identified
between all available subsequent pairs of snapshots with gaps no longer than 4 minutes.

Description Occurences

1.1 New limit order has created 8.80%

1.2 The order has pushed out of top-50 8.68%

2 The rate has changed 44.69%

3.1 The order has been partially matched 21.24%

3.2 The order has been merged 0.23%

4.1 The order has been cancelled 4.41%

4.2 The order has been matched (by the wholesale market
order)

2.94%

4.2 The order has been probably matched 2.11%

4.3 The order has been converted to market order 0.17%

4.4 The order has been merged with some other one 0.14%

4.5 The order has re-entered the top-50 list 6.5%

have in disappeared order, we can assume that converting to market order took

place here.

The remaining ambiguity lies between cases 4.2 and 4.1. It is really hard to

say something for sure about them. Some conclusion can be made taking into

account hourly data about amount of trade. Sometimes there are a lot of

disappeared orders exactly at the top of the book. They could be considered

as sold. The remaining disappeared orders are separated using some heuristic

threshold. We have approximately 6% of such events, so such decision should

not bring too much distortions in the data.

4.2. Summary statistics

First of all it needs to be mentioned that data collection procedure is time

consuming. And it is subject to numerous software and hardware failures. So

not always it is possible to take snapshots every minute or two. Snapshots

series that were successfully collected with gaps no longer than 30 minutes are

described in table 4.1.

15



Table 4.3. Summary statistics for limit orders data. Built using limit orders data
for WMZ→WMR side of the market. aIn — size of the order in WMZ. aOut — size
of the order in WMR. topAsk — book top ask rate at the moment of order creating.
topBid — book top bid rate at the moment of order creating. avgTopAsk — book
average top ask rate for 20 minutes period before order creating. avgTopBid — book
average top bid rate for 20 minutes period before order creating. poissonRate— value
of the rate function of estimated Nonhomogeneous Poisson process for flow of these
orders. rate — rate of the order WMR/WMZ. laIn — log of aIn. laOut — log of
aOut. spread — topAsk - topBid.

Variable Mean Std. Dev. N

aIn 5881.04 282.8706 11558
aOut 188097.75 9049.5897 11558
topAsk 31.923 0.562 11558
topBid 31.824 0.575 11558
avgTopAsk 31.923 0.561 11558
avgTopBid 31.825 0.572 11558
poissonRate 10.191 4.658 11558
rate 32.029 0.577 11558
laIn 9.51 2.581 11558
laOut 12.977 2.58 11558
spread 0.099 0.094 11558

We can see that the longest more or less continuous series is available from the

end of October 2012 till the beginning of January 2013. Obviously 30-minute

gaps are also too large. But they do not bring too many problems. 95.6% of

gaps are not longer than 2 minutes. And only 0.08% of gaps are longer than 4

minutes. So we can state that within the periods listed in table 4.1 our series

are good enough.

In the table 4.2 we can see the distribution3 of identified events in the most

dynamic direction of exchange (WMZ→WMR). The most frequent events are

changing order rates and partially matching4 orders.

3 Events type distribution does not persist over time. And it can be tested formally. But
the numbers do not change dramatically. Thus they can help in general understanding of the
market.

4Under a partially matched order we understand a limit order that has been matched
with a corresponding market order but this market order had lower amount than initial limit
order. As a result limit order decreases its amount by the amount of matched market order.
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On this market we do not have too many cancelations and it is natural due to

the fact that user can freely change the order rate, merge orders and convert

limit order to market one. Moreover canceling the limit order will lead to 0.8%

lose due to WebMoney transaction cost, so it is costly.

The rest of this work mostly uses data for period from 2012-10-28 21:57 till

2013-01-05 23:15. This is the biggest continuous piece of available data. This

sample has 407 pieces of 4-hour long time intervals, 11558 limit orders and

35684 market orders at one side of the market and 9482 limit orders and 45415

market orders at the another side of the market.

Table 4.3 reports summary statistics of selected sample for limit orders for one

side of the market. These variables are mostly used in chapter 5 while building

model for trader choice simulation.
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Chapter 5

Calibration

In order to make required simulation, the following processes and their charac-

teristics should be calibrated:

∙ Order flows of all four order types (side A limit orders, side A market

orders, side B limit orders, side B market orders).

∙ Order amount and rate distributions conditional to current state of the

market.

5.1. Order flows representation

In some papers (Cont et al. (2010); Cont and De Larrard (2013); Huang (2012))

order flows are modeled as Poisson process. Lukov et al. (2012) try to use non-

homogeneous Poisson process and endogenize its rate. Huang (2012) mentions

Hawkes’ point process that is also a non-homogeneous Poisson process.

In this work input flows are modeled as non-homogeneous Poisson processes

with piecewise linear rate function. These flows are calibrated using maxi-

mum likelihood estimator of the rate function using methodology described in

appendix A. This approach requires to fix abscissas of the nodes of the rate

function. We fix these nodes in a grid with interval between points that equal

4 hours1. So, we have 6 nodes for one day of observations. Such regular grid

allows us to consider values at nodes as time series (it will be useful for building

prediction models).

1 If we get to large interval between grid points, estimated rate function will not capture
daily changes in flows intensities. If this interval is too small, we will have too much grid
points (i.e. parameters) and the rate function will be overfitted. Four hours is a trade-off
value of this interval.
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Figure 5.1. Piecewise linear estimation of the Poisson flow rate function for the
period from 29 Oct 2012 till 5 Jan 2012 with nodes every 4 hours (for WMZ→WMR
side of the market). Blue (lower graph) represents limit orders flow. Red (higher
graph) represents market orders flow. Y axis reflects instantaneous intensity of the
flow in # of events per hour.

Figure 5.1 shows one estimated input flow rate function during a sample period

of time. This rate function has obvious periodic oscillations.

Consider the values of the estimated rate function at its nodes as a time series.

Table 5.1 shows the results of the regression of this time series on time related

dummies and several autoregressive terms. Insignificant ones state that in those

periods the rate function should not significantly differ from its value in the base

period (so it looks that Tuesday, Wednesday and Thursday do not significantly

differ from Monday). The hypothesis that residuals after this regression have no

serial correlation can not be rejected. So, after dropping insignificant dummies,

we obtain the model that can be the first approximation of such time series.
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Table 5.1. Values of the rate function at nodes are regressed on time dependant
dummies and autoregressive terms. hod — number of 4-hour period in a day (from 0
to 5). dow — number of the day in a week (from 0 to 6). Built using limit orders data
for WMZ→WMR side of the market.

Variable Coefficient (Std. Err.)

dow=1 -0.788 (0.616)
dow=2 -1.062† (0.622)
dow=3 -1.156† (0.623)
dow=4 -1.285* (0.616)
dow=5 -3.671** (0.623)
dow=6 -3.207** (0.603)
hod=1 -0.931 (0.639)
hod=2 1.677† (0.855)
hod=3 7.047** (0.819)
hod=4 4.015** (0.706)
hod=5 4.345** (0.596)
1st lag 0.145** (0.048)
5th lag 0.139** (0.049)
6th lag 0.204** (0.050)
Intercept 2.462** (0.696)

N 407
R2 0.686
F (14,392) 61.146

Significance levels : † : 10% * : 5% ** : 1%

Unfortunately, all four rate functions (for different order flows) have different

coefficients and models. Some of them require including different lags in order

to rule out autocorrelation. But, anyway, in the end, we obtain relatively simple

models that are capable to make predictions about future rate function values

for several periods of time ahead.

As a result, Nonhomogeneous Poisson process fitting to the data shows robust

cyclical structure of the traders’ intensity, which is surprisingly stable over

substantial period of time. So, using such model allows to capture regular

daily and weekly cycles, which is more then enough for short term simulations.

There is an example of 24 hour simulation in chapter 6. And strictly speaking,
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Table 5.2. Order size regressed on order book characteristics. Dependant variable:
log of order size. Regressors are order flow rate, current spread, top ask rate and top
bid rate. Several specifications are depicted in columns. Built using limit orders data
for WMZ→WMR side of the market.

(1) (2) (3) (4)

poissonRate 0.0435*** 0.0444*** 0.0444*** 0.0444***
spread -0.526** -0.540** -0.590**
topAsk -0.0502 -0.590**
topBid -0.0502 0.540**
Constant 12.59*** 14.18*** 14.18*** 14.18***

Observations 11,558 11,558 11,558 11,558
𝑅2 0.007 0.007 0.007 0.007

*** p<0.01, ** p<0.05, * p<0.1

usually there is no reason to consider longer period of time in the same model

setup.

5.2. Trader choice estimation

If we consider one side of the market, there are two different types of orders:

limit and market ones. Flows for each of them are separated. For the limit one

we need to choose size of the order and its rate. For the market order only its

size should be chosen.

Consider the amount of the order. Table 5.2 shows the results from several

regressions. It is easy to see that current rates are insignificant if spread is taken

into account. And if the spread is omitted, coefficients at rates immediately

change in order to express that rate (the hypothesis that those coefficients are

equal ignoring the sign cannot be rejected with p-value=0.245). This evidence

allows us to drop current rates from the regression having the spread included.
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As a result we can simulate order size as

𝑠𝑖𝑧𝑒 = 𝑒𝑥𝑝(𝐶 + 𝐶𝑝𝑜𝑖𝑠𝑠𝑜𝑛𝑅𝑎𝑡𝑒 · 𝑝𝑜𝑖𝑠𝑠𝑜𝑛𝑅𝑎𝑡𝑒+ 𝐶𝑠𝑝𝑟𝑒𝑎𝑑 · 𝑠𝑝𝑟𝑒𝑎𝑑+ 𝜀) (5.1)

where 𝐶, 𝐶𝑝𝑜𝑖𝑠𝑠𝑜𝑛𝑅𝑎𝑡𝑒 and 𝐶𝑠𝑝𝑟𝑒𝑎𝑑 — coefficients of the corresponding regression,

𝑝𝑜𝑖𝑠𝑠𝑜𝑛𝑅𝑎𝑡𝑒 and 𝑠𝑝𝑟𝑒𝑎𝑑 — current order flow rate and current book spread,

𝜀 — random disturbance distributed according to empirical distribution fitted

from the data (histogram for sample data is shown on figure 5.2a).

In formula 5.1 it is very important to pay attention to distribution of distur-

bances. Due to quite small 𝑅2 of proposed regression these disturbances bring

huge amount of variance in the data. And strictly speaking, this is exactly what

we expected to have: the order flow rates and current state of the book are not

the major determinants of the order size. Major determinants are unobservable

and modeled as random.

If there is a limit order, its rate also should be simulated. In literature it is a

common approach to tie this rate to ask/bid/mid price (Cont et al. (2010), for

example). But such approach leads to undesirable artifacts during simulations2.

That’s why we also use the average ask rate for some short time. Table 5.3

shows that spread seems to be insignificant for the rate of new limit order. Also

we can see that an average top rate and current top rate split the influence on

new orders: approximately 2/3 of the weight has the average rate and 1/3 the

current rate. In addition, it is interesting to observe that the sum of coefficients

at average rate and current rate is more than one (the hypothesis that thier

sum is equal to the one can be rejected). It means that on average new orders

2Consider the book just after successful market order. If new order rate is tied to current
rate, the decision becomes based on the rate that is lower than the usual one in the market. If
this happens too often, spread starts to widen. And such behavior is not natural and should
be ruled out.
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Figure 5.2. Residuals’ histograms for limit order regressions. Built by applying
regression using specification from equation 5.2 (a) and equation 5.1 (b) to limit order
data for WMZ→WMR side of the market.

are placed on top of the book. Huge 𝑅2 can be explained taking into account

the fact that almost all significant variance in rates can be explained by market

movements (they are captured by average rate and current rate). But anyway,

new orders can choose rate that differs from current by up to approximately

1% (at 90% percentile).

So, the order rate can be simulated as

𝑟𝑎𝑡𝑒 = 𝐶𝑝𝑜𝑖𝑠𝑠𝑜𝑛𝑅𝑎𝑡𝑒 · 𝑝𝑜𝑖𝑠𝑠𝑜𝑛𝑅𝑎𝑡𝑒+ 𝐶𝑎𝑣𝑔𝑇𝑜𝑝𝐴𝑠𝑘 · 𝑎𝑣𝑔𝑇𝑜𝑝𝐴𝑠𝑘

+ 𝐶𝑠𝑝𝑟𝑒𝑎𝑑 · 𝑠𝑝𝑟𝑒𝑎𝑑+ 𝐶𝑡𝑜𝑝𝐴𝑠𝑘 · 𝑡𝑜𝑝𝐴𝑠𝑘 + 𝐶𝑙𝑜𝑔(𝑠𝑖𝑧𝑒) · 𝑙𝑜𝑔(𝑠𝑖𝑧𝑒) + 𝜀 (5.2)

where 𝐶, 𝐶𝑝𝑜𝑖𝑠𝑠𝑜𝑛𝑅𝑎𝑡𝑒, 𝐶𝑎𝑣𝑔𝑇𝑜𝑝𝐴𝑠𝑘, 𝐶𝑡𝑜𝑝𝐴𝑠𝑘 and 𝐶𝑙𝑜𝑔(𝑠𝑖𝑧𝑒) are the corresponding

regression coefficients, 𝑝𝑜𝑖𝑠𝑠𝑜𝑛𝑅𝑎𝑡𝑒, 𝑎𝑣𝑔𝑇𝑜𝑝𝐴𝑠𝑘, 𝑡𝑜𝑝𝐴𝑠𝑘 and 𝑠𝑖𝑧𝑒 — average

rate, current rate and order size, respectively, 𝜀 — random disturbance dis-

tributed according to empirical distribution fitted from the data (histogram for

sample data is shown on figure 5.2b).

As a result, the way of simulating limit and market order parameters have been
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Table 5.3. Order rate regressed on order book characteristics without constant.
Dependant variable: order rate. Regressors are current rate of order flow, average top
ask rate for recent 20 minutes, current top ask rate, current spread and log of the order
size.

rate

poissonRate 0.000955***
avgTopAsk 0.614***
topAsk 0.396***
spread -0.00804
laOut -0.0178***

Observations 11,558
𝑅2 1.000

*** p<0.01, ** p<0.05, * p<0.1

described. This approach generates random decisions, where order sizes and

rates are related and partially depend on current order book state.
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Chapter 6

Simulation results

In this chapter one specific exchange strategy will be considered. Assume one

wants to exchange the amount 𝑆 at rate 𝑟 within time 𝑇 . He puts limit order

of size 𝑆 and rate 𝑟 and waits until time expires. Then he just converts the

remaining limit order to market one and finishes the exchange. The simulation

results on sample data are shown on firure 6.1 and firure 6.2.
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Figure 6.1. Mean of the amount of destination currency received from limit order
with different rates. Separate simulations (with 500 iterations each) were done for
different values of the rate. It was assumed that we are intended to exchange 10000
WMZ to WMR in 24 hours. Dotted lines show 95% confidence interval for the mean.

Figure 6.1 shows the mean of destination currency for different limit order

rates. All the rates are slightly below the top rate of the corresponding side
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Figure 6.2. CDFs of destination currency for different limit order rates. Dedicated
simulation (with 500 iterations each) were done for every value of the rate. It was
assumed that we are intended to exchange 10000 WMZ to WMR in 24 hours. The
means are indicated by with circles.

of the book. In this graph it is easy to see that in this particular case a good

decision would be to choose limit order rate close to 32.632 (magenta CDF on

figure 6.2).

More details can be seen from the shape of the cumulative distribution func-

tions shown in figure 6.2. The discrete jump at the right hand side of these

distributions shows the probability of matching the whole limit order. It is easy

to see that in this case increasing limit order rate from 32.600 to 32.632 or from

32.654 to 32.678 almost has no influence on matching probability, but if we in-

crease order rate from 32.678 to 32.7, matching probability decreases twice as

much. These particular results can be explained by structure of starting state

of limit order book and by market intensity.
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So, as a result, figures 6.1 and 6.2 summarize historical information about the

market and try to present this information with the particular exchange case

in mind.

In the end, the final choice of limit order rate should be left for the trader, who

will take into account his preferences.
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Chapter 7

Conclusions

In this work the simulation model of WebMoney Exchanger exchange market

(which is an example of Central Limit Order Book market) was built.

Flows of different order types were simulated separately. Each of them is as-

sumed to be a Nonhomogeneous Poisson process. The rate functions of these

processes have been calibrated with piecewise linear function using maximum

likelihood estimator. As a result, we obtain flows with robust cyclical structure,

which is, surprisingly stable over time.

Trader choice was simulated taking into account the revealed dependencies be-

tween order parameters (rate and size) and market parameters (current activity

level on the market, spread, average rates, top rates). While estimates are sta-

tistically significant, the unobservable parameters have responsibility for large

part of variation of order sizes. The opposite situation have been observed with

rates: they vary around current top rate with skewed small disturbances.

This model differs a lot from its analytical competitors. It does not require

assumptions such as equal order sizes or completely random trader behavior.

Implementing at least some level of trader intelligence brings higher level of

tractability of the model.

Finally, the example of simulation was traced throughout the work. And its re-

sult can be used to make decision about strategy of exchange for this particular

case. Certainly, all these computations can be made for different point in time,

different exchange amount and different strategy using the same approach.

This result summarizes historical information available from the market and
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extends trader’s information set. Comparing outcome distributions among dif-

ferent strategies, analyst can prefer one strategy over another. Such a possibility

can be useful for developing and testing strategies for algorithmic trading, which

is becoming more and more popular way to work with the markets nowadays.

Future research. Considered model can be extended in several ways taking

into account more and more details of traders’ behavior.

Due to the fact that we can trace each limit order over time, it is possible

to cluster traders by their activity and then use this differentiation during

simulations.

From different side, one can consider to review the choice of Nonhomogeneous

Poisson process for modeling order flows. For example, there is an evidence

(Huang 2012) that after new limit order is putted into the book the expected

waiting time for a market order decreases. Such relationships cannot be simu-

lated using current approach. Moreover, one can argue that exponential waiting

times (even in case of nonhomogeneous rate function) are not appropriate as-

sumption for order flows. Additional point of pain is a piecewise linearity of

the rate function (i.e. in reality it should be more smooth). All this can be

probably implemented better replicating more features of the data.

Having additional exogenous data influencing the market, some of simulation

model parameters can be linked to them. For example, we can account for

holidays while building the forecast of order flows.

While implementing marginal improvements like described above it is impor-

tant to understand that taking into account too many issues can substantially

increase computational resources required to perform simulation. As the same

time resulting graphs probably will not differ too much.
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Even in current setup calculations takes too much time (comparing to time

usually available for decision making). Hopefully there is a lot of space for

optimization. First of all Matlab (which is the primary tool in this work) is

not efficient in non-matrix manipulations (e.g. queue operations are too slow).

At least several times improvement can be achieved substituting Matlab with

C#, Java, or C++1. From other prospective, simulations could be run on a

cluster, shortening waiting period again (hopefully, Monte Carlo simulations

can be easily scaled for running on many machines).

1C++ is the best choice in terms of performance.
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Appendix A

Nonhomogeneous Poisson process estimation

The following estimation procedure is the extension of the maximum likelihood

estimator described in (Massey et al. 1996).

Before considering this estimator, we state several facts about nonhomogeneous

Poisson processes.

For nonhomogeneous Poisson flow with rate function 𝜆(𝑡) the number of events

happened throughout the time interval [𝑎, 𝑏] can be described as

P{𝑁(𝑏)−𝑁(𝑎) = 𝑘} =
𝑒−𝜆𝑎,𝑏𝜆𝑘

𝑎,𝑏

𝑘!
, (A.1)

where 𝜆𝑎,𝑏 =
∫︀ 𝑏
𝑎 𝜆(𝑡)𝑑𝑡.

Theorem A.1. For nonhomogeneous Poisson process with rate function 𝜆(𝑡)

the distribution of waiting times for the k-th event after time 𝑡0 has the following

CDF function

𝐹 (𝑥) = 1− 𝑒−
∫︀ 𝑡0+𝑥
𝑡0

𝜆(𝑡)𝑑𝑡
𝑘−1∑︁
𝑖=0

(︂
𝑒−

∫︀ 𝑡0+𝑥
𝑡0

𝜆(𝑡)𝑑𝑡

)︂𝑖

𝑖!

Corollary A.2 (Pasupathy (2011)). For nonhomogeneous Poisson process with

rate function 𝜆(𝑡) the distribution of waiting times for the next event after time

𝑡0 will have the following CDF and PDF functions

𝐹 (𝑥) = 1− 𝑒−
∫︀ 𝑡0+𝑥
𝑡0

𝜆(𝑡)𝑑𝑡

𝑓(𝑥) = 𝑒−
∫︀ 𝑡0+𝑥
𝑡0

𝜆(𝑡)𝑑𝑡𝜆(𝑡0 + 𝑥)
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Theorem A.3. Consider nonhomogeneous Poisson process with rate functi-

on 𝜆(𝑡). The distribution of time of the last event before time 𝑇 will have the

following CDF and PDF functions

𝐹 (𝑥) =
𝑒−

∫︀ 𝑇
𝑥 𝜆(𝑡)𝑑𝑡 − 𝑒−

∫︀ 𝑇
0 𝜆(𝑡)𝑑𝑡

1− 𝑒−
∫︀ 𝑇
0 𝜆(𝑡)𝑑𝑡

, 𝑥 ∈ [0, 𝑇 ]

𝑓(𝑥) =
𝑒−

∫︀ 𝑇
𝑥 𝜆(𝑡) 𝑑𝑡𝜆(𝑥)

1− 𝑒−
∫︀ 𝑇
0 𝜆(𝑡) 𝑑𝑡

, 𝑥 ∈ [0, 𝑇 ]

Now, suppose we have a realization of some Poisson flow of events on [0, 𝑇 ],

which have happened at times 𝑡0, . . . , 𝑡𝑁−1.

Our goal is to estimate the rate function 𝜆(𝑡) of such flow.

Note that lengths 𝑡𝑘 − 𝑡𝑘−1 of time intervals (𝑡𝑘−1, 𝑡𝑘) are independent random

variables distributed according to the theorem A.2.

Thus, {𝑡1 − 𝑡0, . . . , 𝑡𝑁−1 − 𝑡𝑁−2} can be considered as the realization of the

vector, every component of which is independently distributed according to the

theorem A.2.

As a result, we can construct maximum likelihood function as

𝑁−1∏︁
𝑖=1

𝑒
−

∫︀ 𝑡𝑖
𝑡𝑖−1

𝜆(𝑡)𝑑𝑡
𝜆(𝑡𝑖) (A.2)

Then we can consider the maximization problem

argmax
𝜆

𝑁−1∏︁
𝑖=1

𝑒
−

∫︀ 𝑡𝑖
𝑡𝑖−1

𝜆(𝑡)𝑑𝑡
𝜆(𝑡𝑖) = (A.3)

= argmax
𝜆

𝑁−1∑︁
𝑖=1

(︃
−
∫︁ 𝑡𝑖

𝑡𝑖−1

𝜆(𝑡)𝑑𝑡+ ln𝜆(𝑡𝑖)

)︃
= (A.4)
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= argmax
𝜆

(︃
𝑁−1∑︁
𝑖=1

ln𝜆(𝑡𝑖)−
∫︁ 𝑡𝑁−1

𝑡0

𝜆(𝑡)𝑑𝑡

)︃
(A.5)

Assume that we have the realization of nonhomogeneous Poisson process with

piecewise linear rate function

𝜆(𝑥) =

{︂
𝜆𝑘(𝑥) = 𝑎𝑖 * (𝑥− 𝑥𝑖) + 𝑏𝑖, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1], 𝑖 = 0,𝑀 − 2 (A.6)

where 𝜆(𝑥𝑖) = 𝑏𝑖 for 𝑖 = 0,𝑀 − 2.

Denote 𝑏𝑀−1 = 𝜆(𝑥𝑀−1). Then, in order to have (A.6) continuous it is enough

to impose

𝑎𝑖 * (𝑥𝑖+1 − 𝑥𝑖) + 𝑏𝑖 = 𝑎𝑖+1 * (𝑥𝑖+1 − 𝑥𝑖+1) + 𝑏𝑖+1, 𝑖 = 0,𝑀 − 2 (A.7)

Taking into account that 𝑎𝑀−1 * (𝑥𝑀−1 − 𝑥𝑀−2) + 𝑏𝑀−1 = 𝜆(𝑥𝑀−1) = 𝑏𝑀−1,

we have

𝑎𝑖 =
𝑏𝑖+1 − 𝑏𝑖
𝑥𝑖+1 − 𝑥𝑖

, 𝑖 = 0,𝑀 − 1 (A.8)

So, in (A.6) we have the following free variables: 𝑏0, . . . , 𝑏𝑀−1.

Using (A.6) and setting1 𝑥0 = 𝑡0 and 𝑥𝑁−1 = 𝑡𝑀−1, we can rewrite (A.5) as

argmax
𝜆

(︃
𝑁−1∑︁
𝑖=1

ln𝜆(𝑡𝑖)−
∫︁ 𝑡𝑁−1

𝑡0

𝜆(𝑡)𝑑𝑡

)︃
= argmax

{𝑏0,...,𝑏𝑀−1}

(︃
𝑁−1∑︁
𝑖=1

ln𝜆(𝑡𝑖)−
∫︁ 𝑥𝑀−1

𝑥0

𝜆(𝑡)𝑑𝑡

)︃
=

= argmax
{𝑏0,...,𝑏𝑀−1}

(︃
𝑁−1∑︁
𝑖=1

ln𝜆(𝑡𝑖)−
𝑀−2∑︁
𝑖=0

∫︁ 𝑥𝑖+1

𝑥𝑖

(𝑎𝑖(𝑥− 𝑥𝑖) + 𝑏𝑖)𝑑𝑥

)︃
=

= argmax
{𝑏0,...,𝑏𝑀−1}

(︃
𝑁−1∑︁
𝑖=1

ln𝜆(𝑡𝑖)−
𝑀−2∑︁
𝑖=0

∫︁ 𝑥𝑖+1−𝑥𝑖

0
(𝑎𝑖𝑥+ 𝑏𝑖)𝑑𝑥

)︃
=
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= argmin
{𝑏0,...,𝑏𝑀−1}

(︃
−

𝑁−1∑︁
𝑖=1

ln𝜆(𝑡𝑖) +
𝑀−2∑︁
𝑖=0

(︁𝑎𝑖
2
(𝑥𝑖+1 − 𝑥𝑖)

2 + 𝑏𝑖(𝑥𝑖+1 − 𝑥𝑖)
)︁)︃

=

= argmin
{𝑏0,...,𝑏𝑀−1}

(︁
𝐿(𝑎0(𝑏0, 𝑏1), . . . , 𝑎𝑘(𝑏𝑘, 𝑏𝑘+1), . . . , 𝑎𝑀−2(𝑏𝑀−2, 𝑏𝑀−1), 𝑏0, . . . , 𝑏𝑀−2)

)︁
=

= argmin
{𝑏0,...,𝑏𝑀−1}

𝐿(𝑏0, . . . , 𝑏𝑀−1)

Theorem A.4. The function 𝐿𝑥0,...,𝑥𝑀−1(𝑏0, . . . , 𝑏𝑀−1) is concave, if

∙ ∀𝑘∃𝑖 : 𝑡𝑖 ∈ (𝑥𝑘, 𝑥𝑘+1);

∙ ∃𝑘∃𝑖 ̸= 𝑗 : 𝑡𝑖 ∈ [𝑥𝑘, 𝑥𝑘+1], 𝑡𝑗 ∈ [𝑥𝑘, 𝑥𝑘+1].

Proof. Set

𝐼𝑘 = {𝑖 : 𝑡𝑖 ∈ [𝑥𝑘, 𝑥𝑘+1]} (A.9)

𝑎̃𝑘 =

⎧⎪⎨⎪⎩
∑︀

𝑖∈𝐼𝑘
1

𝜆2
𝑘(𝑡𝑖)

· (𝑥𝑘+1−𝑡𝑖)
2

(𝑥𝑘+1−𝑥𝑘)2
, 𝑘 < 𝑀 − 1

0, 𝑘 = 𝑀 − 1

(A.10)

𝑏̃𝑘 =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑘 = 0∑︀

𝑖∈𝐼𝑘−1

1
𝜆2
𝑘−1(𝑡𝑖)

· (𝑡𝑖−𝑥𝑘−1)
2

(𝑥𝑘−𝑥𝑘−1)2
, 𝑘 > 0

(A.11)

𝑐𝑘 =
∑︁
𝑖∈𝐼𝑘

1

𝜆2
𝑘(𝑡𝑖)

· (𝑡𝑖 − 𝑥𝑘)(𝑥𝑘+1 − 𝑡𝑖)

(𝑥𝑘+1 − 𝑥𝑘)2
(A.12)

1 It is easy to reduce the general case with 𝑥0 ≤ 𝑡0 and 𝑡𝑀−1 ≤ 𝑥𝑁−1 to the case with
𝑥0 = 𝑡0 and 𝑥𝑁−1 = 𝑡𝑀−1 using theorems A.2 and A.3.
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Then Hessian matrix of 𝐿 by 𝑏1, . . . , 𝑏𝑀−1 will look like

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎̃0 + 𝑏̃0 𝑐0 0 0 . . . 0 0

𝑐0 𝑎̃1 + 𝑏̃1 𝑐1 0 . . . 0 0

0 𝑐1 𝑎̃2 + 𝑏̃2 𝑐2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 𝑎̃𝑀−2 + 𝑏̃𝑀−2 𝑐𝑀−2

0 0 0 0 . . . 𝑐𝑀−2 𝑎̃𝑀−1 + 𝑏̃𝑀−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.13)

By definition 𝑎̃𝑘 > 0 for 𝑘 = 1,𝑀 − 2 and 𝑏̃𝑘 > 0 𝑘 = 2,𝑀 − 1 (by theorem

assumptions ∀𝑘∃𝑖 : 𝑡𝑖 ∈ (𝑥𝑘, 𝑥𝑘+1)), and 𝑐𝑘 ≥ 0 (here (𝑡𝑖 − 𝑥𝑘)(𝑥𝑘+1 − 𝑡𝑖) > 0

because of 𝑡𝑖 ∈ [𝑥𝑘, 𝑥𝑘+1]).

It can be shown that 𝑎̃𝑘 𝑏̃𝑘+1 − 𝑐2𝑘 ≥ 0 and ∃𝑘 𝑎̃𝑘 𝑏̃𝑘+1 − 𝑐2𝑘 > 0

Under these constraints Hessian of 𝐿 is positive definite an thus 𝐿 is concave. �

While maximizing (A.5) we can consider only positive functions 𝜆(𝑡) (because

it is the rate function of the Poisson process). It will be enough to impose that

∀𝑘 𝑏𝑘 ≥ 0. In this case 𝐿 has lower bound and the theorem A.4 guarantees the

convergence of numerical minimization.

So, having some weak enough conditions on sample size stated in theorem A.4,

gradient descent, for example, will converge to the minimum of 𝐿 and will find

the maximum likelihood estimator of 𝜆(𝑡) in a class of piecewise linear functions

with fixed abscissas of the nodes.

37


	Introduction
	Literature review
	Methodology
	Data
	Data description
	Summary statistics

	Calibration
	Order flows representation
	Trader choice estimation

	Simulation results
	Conclusions
	Works cited
	Nonhomogeneous Poisson process estimation

