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HIGHLY VOLATILE EMERGING 

MARKETS 

By Bilyi Mykyta 

Thesis Supervisor: Professor Olesia Verchenko 
   

This study compares performance ofBlack-Scholes with volatility smile correction 

and non-linear GARCH option pricing models. Thelog of Mean Square Error 

ratio and wins ratio of one day out-of-sample forecast are used as measures of 

accuracy. The data that is used in this study comes from Russian derivatives 

exchange board. Market prices for the option on RTS index futures for twelve 

months of 2011 are considered. 

Based onlog-MSE ratio criterion the conclusion is made about equal short-term 

forecasting powers of two pricing models.Wins ratio criterion implies that Black-

Scholes model outperforms GARCH in calm market conditions, while the latter 

model produces more credible option price forecasts during market turmoil. This 

result suggests that GARCH option pricing model may be used along with 

convenient Black-Scholes model to estimate option prices during periods of high 

volatility in the emerging markets. 
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C h a p t e r  1  

INTRODUCTION 

The recent world financial crisis has significantly influenced investors’ behavior. 

Uncertainty about the future of the Euro zone due to the instability of periphery 

economies has deteriorated the investors’ perception of the risks inherent in 

certain developed markets with yields on short-term government debt exceeding 

15% in Greece and Portugal. The massive flight to safe heavens has decreased 

the annual yields on relatively riskless investments down to roughly 2.5%, such as 

for US Treasury bills and German Eurobonds. Therefore, in a bipolar world, 

developing markets become increasingly attractive to the investors. Double-digit 

economy growth rates and large number of undervalued assets ensure that high 

yields on such markets stem not only from high risks but also from real economic 

potential. 

Moreover, newly emerging and developing economies are strengthening their 

positions in the global economy. For instance, China currently is considered to be 

the driving force of future economic growth, while European economies have 

considerably increased their dependence on Russian commodity exports. 

In the givencircumstances, development of financial markets in these countries 

becomes of paramount importance.  In order to mobilize the vast cash inflow to 

the Russian economy from exports of natural resources government actively 

supports the development of spot and derivative financial markets. Same is true 

about China – its largest stock exchange in Shanghai is now ranked fifth in the 

world by market capitalization. 
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However, investors’ life is not easy on such markets. Consider Russian market for 

example. While offering annual yields of up to 30% it is characterized by high 

level of information asymmetry and controversial legislature. Numerous cases of 

violation of rights of independent investors are reported in Russia. Corrupted 

courts and weak regulatory authorities make it possible for business owners to 

distort the disclosed information. When such cases become revealed to public 

stock prices unexpectedly fall and overallmarket volatility increases. 

One more cause of high volatility in Russian financial market is its dependence 

on commodity prices. As it was already mentioned, the main drivers of Russian 

economy are exports of raw materials, such as oil and natural gas. Therefore, the 

financial performance (and consequently the stock price) of the largest members 

of Russian market is strongly dependent on world prices for raw materials. Thus, 

external shocks that happen to other resource exporters have significant impact 

on Russian market. 

Therefore, such stock markets as Russian are highly volatile and difficult to 

forecast. Many investors are looking forways to hedge against the changes in 

prices of stocks, raw materials and final products. One of the possible solutions 

involves option trading. The holder of an option contract has a right to buy or to 

sell some asset at a predetermined price; consequently, the investor is able to fix 

the maximum possible loss. 

Moreover, while requiring low initial investment, options allow betting on the 

future behavior of the underlying asset and may generate large profits.The 

developing markets are believed to be lucrative since they assume significant 

amounts of underpriced assets. Options allow betting on future growthand, 

therefore, help to attract new investors and increase market liquidity. 
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The largest futures and options exchange board on Russian market is FORTS 

(Futures and Options on RTS exchange).Base assets include futures on market 

indices, futures on stock prices of biggest corporations and futures on raw 

materials such as oil and gold.According to The Futures Industry Association, the 

number of derivative contracts traded in Russia in 2011 exceeded 1 billion with a 

73.5% growth compared to 2010, which makes FORTS market tenth by the 

volume of traded contractsand third most rapidly developing derivative market in 

the world in the first quarter of 20111. Thus, the demand for options on the 

Russian market is high. 

Naturally, investors are interested in the fairness of option prices and their 

predictability in these markets. According to the DerEX (Derivative Experts)2 

agency the majority of investors in the Russian market employ the classic Black-

Sholes approach with the price correction for volatility smile/smirk effects. 

However, many other option pricing schemes have been suggested in theoretical 

literature. Nevertheless, they are almost never tested on the developing or highly 

volatile markets. Therefore, it is reasonable to ask whether some other methods 

can produce better price estimates than Black-Scholes formula on Russian market 

and probably on markets of similar level of development. If the answer is 

positive, the application of these methods would help to reduce the level of price 

uncertainty on such markets and increase their attractiveness to investors. 

The main hypothesis that will be addressedin this research is that GARCH option 

pricing model is more suitable model for highly volatile markets than Black-

Scholes model. The reason for such claim is the following: by construction the 

                                                 
1FORTS currency pairs are fastest growing contracts in the world over the Q1 2011, Accessed May 20, 2012, 

http://www.rts.ru/a22546/?nt=120 

2DerEX is an analytical agency which studies Russian derivatives market and organizes practical courses for 
derivatives traders. 
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GARCH process incorporates historical market data to construct a specific 

volatility pattern, while Black-Scholes uses constant volatility estimates. Of 

course, in real-world applications volatility in the Black-Scholes formula is 

updated and corrected for the maturity and moneyness of the option. However, 

GARCH model captures these effects implicitly. Moreover, in GARCH 

modelmore parameters should be estimated which means that it has more 

degrees of freedom and should be more flexiblea priori (it should adapt faster to 

changing market conditions).On the other hand this flexibility is compensated by 

a more complicated process of estimation which is computationally demanding 

and may require more time. Moreover, the obtained model is not necessary 

credible. 

The forecasting powers of GARCH model and Black-Scholes model will be 

compared according to the criterion of the accuracy of the out-of-sample price 

forecast. Two measures of accuracy will be used with one of them beingmean 

square error (MSE) and the other one is wins ratio. The first will capture the 

absolute difference in the forecasts while the second one will simply count the 

ratio of more precise forecasts. 

The historical data will be used to estimate the parameters of GARCH model 

andto select the appropriate volatilityfor the Black-Sholes model. The conclusion 

about the applicability of GARCH method to pricing options on the emerging 

markets will be made. 

The data about the dynamics of prices of call options on futures on RTS index 

and the corresponding base asset on Russian market will be used. The daily data 

would be collected for one year period betweenDecember 2010 and December 

2011. 
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The next section will concentrate on the academic research on the topic. After 

that two pricing models will be described in details and algorithms for their 

estimation will be provided. Then the available data will be summarized. The 

discussion of the approaches for empirical testing and its results will follow. The 

conclusions on the performance of options pricing models will be presented in 

the last chapter. 
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C h a p t e r  2  

LITERATURE REVIEW 

The most well-known and widely used model for options pricing was developed 

byBlack and Scholes(1973) and Merton (1973). These studies modeled the price 

of the base asset as a lognormal process and applied stochastic calculus to derive 

a formula for option pricing. Among the main properties of this model are its 

simplicity, ease of implementation and considerable preciseness. This study gave a 

significant impulse to the options trade all over the world, because it developed a 

widely applicable method to calculate option prices. Soon after a study by Cox, 

Ross and Rubinstein (1979) applied the idea of binomial trees to describe the 

behavior of the base asset and developed the simplest theoretical approach to 

option pricing. 

However, the main limitation of these models is the assumption of constant 

volatility of the underlying asset price, which means that fluctuations of the price 

have fixed average amplitude. Empirical studies (Bollerslev, Chou and Krone, 

1992) have shown that in the majority of real-world cases when option prices and 

risks or hedging portfolio should be estimated, variable volatility should be taken 

into the account. Therefore, various models, which incorporate time-varying or 

even stochastic volatility, were developed. 

Moreover, market evidence suggests that implied volatilities (extracted from 

market prices) of the options written on the same underlying asset but with 

different strikes usually are different. Actually, the further the current price of an 

asset from the strike, the higher is implied volatility. This phenomenon is called 

‘volatility smile/smirk’ and its first description in the academic literature is 

attributed to Rubinstein (1985). 
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The two predominant approaches that can be distinguished among the models 

that incorporate variable volatility are deterministic-volatility models and 

stochastic volatility models. The first group assumes that volatility can be 

estimated from the market data such as historical asset prices. The second group 

incorporates a more demanding approach which assumes that source of option 

price uncertainty is different from the uncertainty in the underlying asset price; 

however these uncertainties may be correlated. For example consider the variance 

gamma model described by Madan, Carr and Chang (1998) which modeled 

option contract price as a generalized Brownian motion in the form of a three-

variable variance gamma stochastic process. The model incorporates the concept 

of volatility smile and being properly calibrated provides good in-sample 

estimation of option prices. 

While obtainingprecise price estimates (Hull and White, 1987; Stein and Stein, 

1991) stochastic volatility models are usually rather difficult to implement. Due to 

the fact that in most cases such models do not have a closed-form solution, 

specific numerical methods should be applied. These methods are usually time-

consuming which eliminates the possibility of their application on real markets 

where the decision making process should be quick. 

Therefore, the non-stochastic volatility models are considered to be the best 

choice in terms of trade-off between the accuracy and possibility of practical 

usage. These are various binomial tree models, generalized methods of moments 

(GMM) models and general autoregressive conditional heteroscedasticity 

(GARCH) models. 

Introduced by Engle (1982) autoregressive conditional heteroscedasticity (ARCH) 

models were used for general time-series analysis. The main idea of these models 

is that in each period the error term is assumed to be a function of the previous 
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values of error terms with appropriate weights assigned. The application of 

GARCH for the options pricing problem was introduced by Duan (1995) who 

used this approach to simulate returns and volatility of the underlying asset. 

GARCH has proven to be a good estimation approach for time-varying volatility, 

giving accurate in-sample and out-of-sample estimates. Moreover, it was 

theoretically proven by Duan (1996) that bivariate diffusion methods are limits of 

the GARCH option pricing model when the discretization of time approaches 

zero. This means that the large group of stochastic volatility methods which are 

much less straightforward and harder to estimate can be approximated with 

GARCH models. 

The description of the one of the most convenient numerical algorithms for 

GARCH simulation was developed by Duan and Simonato (1998).Authors 

employ the traditional Monte-Carlo simulation pattern and also address the 

problem of simulated option price being out of natural boundaries. In such a case 

it is impossible to find the implied volatility of an option contract and simulation 

should be repeated once again. Authors suggest using Empirical Martingale 

Simulation (EMS) process which performs martingale adjustment on each step of 

the algorithm. 

One of the most recent theoretical studies on GARCH option pricing models 

was published by Heston and Nandi (2000). Authors employ specification of 

non-linear GARCH which slightly differs from the model of Duan (1995). The 

main result that authors obtain is the closed-form solution for such model. 

However, for this solution to be applied, GARCH parameters should be 

estimated from market data. Authors suggest using maximum likelihood method 

which, however, may fail to produce credible model as log-likelihood function 

may be too flat to find the global minimum within reasonable time. 
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Considering the empirical tests of GARCH approach, the study byDuan and 

Zhang (2001)on GARCH option pricing metodshould be mentioned. Authors 

compared GARCH model to the Black-Scholes model with the correction for 

volatility smile using the data from the Hong-Kong Stock exchange before and 

during the Asian financial crisis in 1998. It turned out that GARCH gives more 

precise estimates of option prices even during market turmoil. Liu and Morley 

(2009) have also used Hang Seng Index options data from Hong Kong stock 

exchange to assess the effectiveness of GARCH processes for volatility 

forecasting. Comparing GARCH to the historical averaging models they have 

obtained results similar to Duan and Zhang (2001) – in the out-of-sample 

forecasting GARCH gave the most precise estimates among the models which 

were compared. 

The only published academic study on options market in Russia is attributed to 

Morozova (2011). Author tries to construct an option pricing model which 

incorporates the ‘true’ statistical distribution of option prices. As this model 

appears to produce the estimates which are different from the observed market 

prices, the conclusion is made about informational inefficiency of Russian 

options market. Although such conclusion sounds reasonable for the developing 

market, the employedapproach is doubtful as the credibility of ‘true’ pricing 

model can hardly be assessed. Therefore, the option pricing problem on Russian 

and similar emerging market remains open. 

Thus, this study will contribute to the existing literature by assessing the 

applicability of GARCH model and Black-Scholes model with the correction for 

volatility smile/smirk on Russian market. Yet, GARCH option pricing model was 

not tested on the data from developing markets. The existing evidence on the 

effectiveness of this method for price forecasting applied to Asian crisis market 
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data (Duanand Zhang, 2001) makes it a reasonable candidate for testing on 

Russian market.  
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C h a p t e r  3  

METHODOLOGY 

In this study a nonlinear generalized autoregressive conditional heteroscedastic 

(NGARCH) process is used to model the behavior of log-return of base 

asset.Such model is characterized by discrete time intervalswhich correspond to 

daily frequency of market data used in this study. The risk-neutral version of 

suchNGARCH(1,1)model  was developed by Duan(1995), whose notations will 

be followed from now on. 

In the general specification, one-period rate of return on futures is assumed to be 

conditionally lognormally distributed as in equation (1), and its error term follows 

the process described by equation (2): 

 
 

(1) 

 

  (2) 

Here  is a price of the futures (base asset) at moment t,  is a risk-free rate of 

return,  is risk premium parameter,  is leverage parameter and  is 

conditional variance. 

It was shown by Duan (1995) that the risk-neutral version of this model is 

constructed by setting (  becomes standard normal variable 

under risk-free measure). Moreover, the dividend yield and risk-free rate can be 

neglected as the base asset is futures with same maturity as the option; therefore, 
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these two factors are already captured by futures price (Lieu, 1990). Thus, the 

specification described by equations (3) and (4) is used. 

 
 

(3) 

 

  (4) 

The four parameters  of these equations areestimated with the 

help ofMonte-Carlo simulations and numerical minimization process. On the first 

step initial values of parameters are selected and 10,000 futures prices paths are 

generated according to equations (3) and (4). On the second step these prices are 

normalized in order to ensure that they obey martingale property. This procedure 

is called Empirical Martingale Simulation and its detailed description was given by 

Duan and Simonato (1998).On the third step for each of simulated futures prices 

at maturitythe price of futures-style call option is calculated as shown in equation 

(5). 

  (5) 

Here  is the mathematical expectation with respect to risk-neutral measure 

and  is the strike value of the option. The call prices are then averaged on the 

step four to get the estimated for the option price. 

Steps 1-4 are repeated for each of the options in the sample that is used for 

calibration. The obtained prices are then plugged into the Black-Scholes formula 

(6), which is solved to get the implied volatilities. Finally, these volatilities are 

compared to the implied volatilities derived from market prices and value of the 
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objective function (7) is calculated. Then the numerical minimization algorithm is 

used to update the parameters of GARCH model until minimum of (7) is 

attained. 

 

 

 

(6) 

Finally, when parameters of GARCH model are obtained it is used for price 

forecasting as described above in steps 1-4. 

 
 

(7) 

Black-Scholes formula for European-style call option (6) is used as a benchmark 

in this research. The main challenge that practitioners face is to estimate the 

volatility parameter . Moreover, there exists strong empirical evidence that  

should be adjusted by the moneyness of the option – higher difference between 

current price of base asset and strike implies higher volatility.  

In this research the approach for implied volatility forecasting which is similar to 

the one described byDumas, Fleming and Whaley (1998) will be followed. 

Different estimators for volatility will be used for in the money 

options , near the money options  

and out of the money options . For each class the implied 

volatilities will be averaged across in-sample market option prices in order to get 
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volatility estimates for out-of-sample forecasting. The average volatilities are than 

used for price forecasting of options of similar class. 
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C h a p t e r  4  

DATA 

The market data for this study comes from Russian derivatives exchange board 

FORTS. In particular, this research focuses on the option contractswhich base 

asset is futures on RTS index. The reason for such selection is the highest 

liquidity of these contracts among all options on FORTS board. RTS index 

consists of 50 Russian stocks which are weighted according to their capitalization. 

Corresponding futures are written on 1,000 shares of RTS index and mature each 

quarter. 

Option contracts which are written on RTS index futures and mature on the 

same date with futures are selected for this study. All options are of American 

type, therefore only call options are considered to eliminate the possibility of early 

execution (Hull, 2009). The daily data on the market prices of futures and 

corresponding option contracts for the period between 15 December 2010 and 8 

December 2011 is obtained from the official site of RTS exchange. The dataset 

includes contracts with four maturity dates: 15 March 2011, 15 June 2011, 15 

September 2011 and 15 December 2011;on each trading day only contracts with 

earliest maturity are, however, considered. The last 5 trading days for each option 

are excluded from the sample to eliminate near-maturity bias. 

For each option contract up to 18 strikes with step of 5,000 rubles are 

considered. However, only from 6 up to 14 most actively traded strike quotes are 

selected each day in order to avoid problems which may arise from low liquidity. 

The number of option contract pricesfor each moneyness category is provided in 

Table 1. The largest number of price observationsin the sample is for out-of-the-

money options, while the smallest part is for near-the-money. No specific 
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timepattern within any category is found upon comparison offirst half of the 

sample and second half of the sample for each maturity. 

 

Table 1.The number of option contracts prices by moneyness 
Maturity   OTM NTM ITM Total

First half 230 47 98 375 

Second half 194 47 149 390 

March 2011 

Total 424 94 247 765 

First half 260 57 176 493 

Second half 329 58 123 510 

June 2011 

Total 589 115 299 1003 

First half 230 62 266 558 

Second half 370 56 132 558 

September 

2011 

Total 600 118 398 1116 

First half 354 35 104 493 

Second half 291 45 174 510 

December 

2011 

Total 645 80 278 1003 

 

The review of futures prices for the obtained dataset has shown that significant 

shock has struck Russian market in August 2011. During the period between 3 

August and 11 August 2011 futures on RTS index has lost 20% due to global 

markets turmoil caused by the outbreak of Eurozone crisis. The 2011 historical 

price movement of futures on RTS index is shown in the Figure 1. 
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Figure 1. Historical prices of RTS index futures 

Thus, the obtained data contains a possible structural break which provides an 

opportunity to compare the performance of two option pricing models not only 

in calm market conditions but also during the market turmoil. 
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C h a p t e r  5  

EMPIRICAL RESULTS 

For the empirical testing of Black-Scholes and GARCH models Matlab software 

was used. In order to estimate moneyness-dependent volatility in the Black-

Scholes model historical prices for five previous trading days were used. Such 

time interval is required to ensure that options of all three types (out-of-the-

money, near-the-money and in-the-money) are present in the historical sample 

and average implied volatilities in each class can be calculated. 

The summary statistics for averaged implied volatilities estimates is provided in 

the Table 2. The minimum annual volatility observed in the sample is roughly 

22% while at maximum it reaches 55% during August turmoil. The average value 

of implied volatility increases for the contracts which mature in September and 

remains higher than 50%for the contracts which mature in December. However, 

the standard deviation of implied volatility is only high during the turmoil 

(roughly 10%), while it falls to 3% for contracts which mature in December. This 

evidence supports the initial assumption about time-varying volatility. 

For the estimation of GARCH model there is no need to use historical data 

forthe period longer than one day. Minimization process yields parameters of 

GARCH process such that volatilities of GARCH-priced options are as close as 

possible to the implied volatilities of historical one-day sample. Root mean square 

error which is simply the standard deviation of error of GARCH volatility 

estimate is the goodness-of-fit measure for this model. The average RMSE does 

not exceed 3%, which is significantly lower than minimum market volatility of 

22%. This implies that GARCH is able to produce credible estimates for option 
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implied volatiles and prices. For the summary statistics of GARCH parameters 

refer to the Table 3. 

It should be noted that in the risk-free specification of GARCH model neither 

risk-premium ( ) parameter, nor leverage ( ) parameter can be separately 

estimated. However, this is not a problem as the main purpose of GARCH 

model in this research is to generate credible paths for asset returns. 

Table 2. Summary statistics of implied volatility estimates 
Maturity  OTM NTM ITM 

Minimum 0.2255 0.2369 0.2571 

Maximum 0.2732 0.2776 0.3465 

Mean 0.2463 0.2606 0.2856 

March 2011 

S.D. 0.0140 0.0108 0.0184 

Minimum 0.2274 0.2424 0.2421 

Maximum 0.2862 0.2868 0.2842 

Mean 0.2516 0.2612 0.2663 

June 2011 

S.D. 0.0196 0.0094 0.0110 

Minimum 0.2225 0.2379 0.2455 

Maximum 0.5109 0.5579 0.5218 

Mean 0.3195 0.3343 0.3236 

September 2011

S.D. 0.1069 0.1098 0.0965 

Minimum 0.3812 0.4190 0.3958 

Maximum 0.5153 0.5720 0.5645 

Mean 0.4399 0.4770 0.4818 

December 2011 

S.D. 0.0310 0.0416 0.0481 
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To compare out-of-sample prediction power of two models one-day option price 

forecasts are considered. Regarding the fact that Black-Scholes model needs at 

least five days of historical data to be estimated, the forecasts are calculated 

starting from the day 6 of each sampling period and continue up to the end of the 

period. Both models are updated in each subsequent period: the average implied 

volatilities in Black-Scholes model are recalculated and GARCH parameters are 

re-estimated; therefore, any new market information is immediately captured by 

both models. 

Table 3. Summary statistics of GARCH coefficients 
Maturity Coef.     RMSE 

Min 7.9E-05 0.370 1.07E-07 116.18 0.0054 

Max 0.000126 0.533 1.64E-07 299.03 0.0964 

Mean 9.92E-05 0.458 1.26E-07 198.28 0.0211 

March 

2011 

S.D. 1.18E-05 0.045 1.58E-08 50.419 0.0178 

Min 7.36E-05 0.371 9.63E-08 111.65 0.0041 

Max 0.000135 0.547 3.05E-07 326.05 0.0506 

Mean 9.82E-05 0.461 1.78E-07 204.13 0.0176 

June 2011 

S.D. 1.44E-05 0.042 5.52E-08 64.928 0.0089 

Min 7.21E-05 0.371 9.87E-08 116.18 0.0033 

Max 0.000145 0.863 1.89E-07 246.14 0.0449 

Mean 0.000101 0.581 1.41E-07 195.09 0.0160 

September 

2011 

S.D. 2.03E-05 0.159 2.47E-08 34.861 0.0091 

Min 0.000107 0.371 2.81E-08 106.86 0.0087 

Max 0.000334 0.716 1.07E-07 246.72 0.0549 

Mean 0.000251 0.542 4.19E-08 152.55 0.0291 

December 

2011 

S.D. 4.62E-05 0.079 1.19E-08 42.165 0.0125 

 



 

 22

The option price forecasts are compared using two measures. Firstof them 

calculates the Mean Squared Error between implied volatilities of the price 

forecast and actual market price as shown in equation (8). 

 
 

(8) 

Here n is the number of option prices that are forecasted during one period, 

 is the implied volatility of the forecasted option price and  is the 

implied volatility which corresponds to the market option price. 

Although such measure does not compare forecasted prices directly, it has the 

advantage of being independent of the absolute values of option prices. This 

means that pricing errors are accounted fairly and options with large premiums 

do not bring any distortion.  In order to compare models with each other, natural 

logarithm of the ratio of two MSE is calculated as shown in equation (9). 

 
 

(9) 

According to the construction of log-MSE ratio, its negative value means that 

GARCH provides more accurate price estimates while positive value implies that 

Black-Scholes model outperforms GARCH model. The natural logarithm of 

MSE ratio is calculated for each daily set of forecasted prices. The obtained 

values of log-MSE ratios for contracts of four different maturities are presented 

in Table 4 while the average values, descriptional statistics and results of 

significance tests for DMSE are presented in the Table 5. 

 

Table 4. Log-MSE ratio values for each trading day 
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Trading 
day 

March 
2011 

June 
2011 

September 
2011 

December 
2011 

6 1.028422 0.879604 -0.61454 -0.24964 
7 1.202181 0.101239 0.590889 -0.62646 
8 1.335988 -0.09652 0.380049 -0.30465 
9 1.43789 -0.18662 1.321054 0.444541 
10 -0.13236 0.822577 -0.43582 0.385932 
11 0.745789 1.131998 0.728724 -0.12274 
12 1.254344 1.012363 1.193262 0.466285 
13 1.046297 0.942873 1.09631 -0.43068 
14 -2.96619 1.361673 1.195399 -1.08342 
15 0.369693 1.7944 0.884429 -1.3784 
16 0.207604 1.976638 1.863333 -0.45913 
17 1.163543 2.055229 0.105668 0.565679 
18 0.80733 1.897435 0.970331 -0.59661 
19 1.628862 1.281712 1.623985 -0.52488 
20 1.419904 1.065811 0.895698 -0.59582 
21 1.142679 1.903616 0.347677 0.003516 
22 -0.3876 1.554643 -0.27625 0.929877 
23 -1.56363 0.172646 0.953779 0.595069 
24 -0.8355 2.012652 -0.67458 0.773568 
25 0.118654 -0.99522 2.278952 0.503618 
26 0.057868 0.448866 1.019188 0.351457 
27 0.580324 0.688551 -0.11135 0.648042 
28 0.185975 0.513846 1.44763 -0.01234 
29 1.547654 0.225964 0.755677 0.462736 
30 -0.37266 0.28205 -0.0749 0.164773 
31 -1.12225 0.976166 -0.39016 0.229139 
32 0.848005 0.722617 0.71756 -0.87943 
33 1.736988 0.092708 -0.02016 -1.05279 
34 -0.7605 0.205213 0.630522 -0.61397 
35 -0.55483 -0.38684 0.097435 -1.08621 
36 -0.68006 -0.15056 -0.98907 -0.36069 
37 0.569286 -2.68725 -0.53608 0.433836 
38 0.210928 -1.17767 -0.34583 -0.08484 
39 1.449687 0.310775 -0.97298 0.997232 

Table 4. Log-MSE ratio values for each trading day - Continued 
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Trading 
day 

March 
2011 

June 
2011 

September 
2011 

December 
2011 

40 0.080783 0.315228 -1.05826 1.178631 
41 -0.48031 1.281994 -0.53968 -0.3106 
42 -0.64104 -0.35288 -0.97167 0.785318 
43 0.992733 0.034348 -0.51754 -0.08046 
44 0.580537 0.047625 -0.47258 0.821462 
45 0.509509 -0.06583 -3.01003 0.322151 
46 0.272501 -0.12789 -3.0467 0.062997 
47 0.488792 -0.38089 -1.58153 -1.29523 
48 -0.73663 0.679989 0.487152 -1.53264 
49 0.598409 0.087119 0.643188 -0.91622 
50 -0.01148 -0.48782 0.287369 -0.42991 
51 0.32878 0.039124 0.075407 0.467701 
52  0.151433 -0.29081 0.223416 
53  0.132033 -0.50739 0.241568 
54  0.556149 -0.15647 0.345498 
55  -0.28426 -0.22039 -0.10036 
56  -0.4007 -0.54658 -1.32914 
57  -0.64066 -1.62846 -0.51369 
58  1.074302 -1.14018 0.164308 
59  0.036789 0.482652 -0.40997 
60   -1.17726  
61   1.308908  
62   0.183062  

 

Positive average log-MSE ratio for the three of four maturities suggests that on 

average Black-Scholes model produces slightly better forecasts than GARCH 

model.However, average log-MSE ratio for the second half of the sample is 

negative in three of four cases, which may be an indicator that GARCH model 

produces more accurate estimates than Black-Scholes model for the option 

contracts that are closer to maturity. 
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Nevertheless, none of the values of t-statistics exceeds the critical value which 

means that all log-MSE ratios are statistically insignificant. This leads to the 

conclusion that Black-Scholes and GARCH option pricing methods are equally 

powerful in out-of-sample forecasting, according to log-MSE ratio measure.  

Table 5. Comparison of forecasting power based on Mean Squared Errors 
Sample  March 

2011 

June 2011 September 

2011 

December 

2011 

Min -2.97 -1.00 -0.67 -1.38 

Max 1.63 2.06 2.28 0.93 

Mean 0.43 0.91 0.63 -0.03 

S.D. 1.09 0.78 0.75 0.61 

First 

Half 

t-stat 0.39 1.17 0.84 -0.05 

Min -1.12 -2.69 -3.05 -1.53 

Max 1.74 1.28 1.31 1.18 

Mean 0.21 -0.08 -0.58 -0.15 

S.D. 0.79 0.73 0.97 0.73 

Second 

Half 

t-stat 0.26 -0.11 -0.59 -0.21 

Min -2.97 -2.69 -3.05 -1.53 

Max 1.74 2.06 2.28 1.18 

Mean 0.32 0.42 0.04 -0.09 

S.D. 0.95 0.89 1.05 0.67 

Total 

t-stat 0.34 0.46 0.04 -0.13 

 

The second measure that is used to assess the performance of two option pricing 

models is wins ratio. It is calculated as ashare of option contracts in the total 

sample for which the GARCH model has produced a more accurate price 

forecast. Though, the value of wins ratio below 0.5 indicates that Black-Scholes 
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model has performed better, while the ratio above 0.5 ensures that GARCH has 

produced more credible estimates. 

Wins ratio approach is different from log-MSE ratio comparison as it ensures 

that none of the models performs better only due to the overfitting. The 

calculatedwins ratios for each maturityand the corresponding values of z-test for 

the equality to 0.5 are presented in the Table 5. 

Table 6. Comparison of forecasting power based on wins ratioa 

  March 

2011 

June 2011 September 

2011 

December 

2011 

wins 0.35 0.32* 0.32* 0.53 First 

Half z-stat. -1.48 -1.99 -2.01 0.37 

wins 0.39 0.48 0.66† 0.53 Second 

Half z-stat. -1.04 -0.21 1.91 0.37 

wins 0.37* 0.40 0.53 0.53 Total 

z-stat. -1.75 -1.47 0.40 0.52 
a–“*” indicates wins ratio that is statistically lower 0.5 under 5% confidence level (one-tailed test), 
“†” indicates wins ratio that is statistically higher than 0.5 under 5% confidence level (one-tailed 
test). 

Wins ratio test shows that the number of more accurate forecasts is statistically 

higher for Black-Scholes for the whole set of contracts that matured in March. 

This model has also produced better price estimates during the first half of the 

sample of contracts which mature in June. However, when turmoil started, 

GARCH model managed to outperform Black-Scholes with wins ratio of 0.66 for 

the second half of the sample of contracts that matured in September.Further on, 

the performance of two models is very similar with wins ratio being statistically 

indifferent from 0.5. 



 

 27

Thus, the two accuracy measures did not reveal the model which performs better 

under any circumstances. Two pricing methods produce statistically similar 

results within an MSE framework, while wins ratio test implies that GARCH 

option pricing model performs better during the periods of high volatility. 
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C h a p t e r  6  

CONCLUSION 

This study addresses comparison of option pricing models on Russian derivatives 

market. The two models that are considered are the widely used Black-Scholes 

model with correction for volatility smile effects and GARCH option pricing 

model. Although academic evidence exists that the latter is able to outperform BS 

model in the developed markets, the out-of-sample forecast comparison of 

market data from Russian market suggests that two models have relatively similar 

prediction power on this market.  

The comparison based on the mean square errorcriterion does not reveal better 

performing model, as all results are statistically indistinguishable. On the other 

hand, wins ratio comparison suggests that Black-Scholes model is more suitable if 

the market situation is calm, while GARCH produces better forecasts under high 

volatility. 

Thus, the possibility of application of GARCH model for option pricing on 

Russian market was empirically proven. Although it did not manage to 

outperform Black-Scholes model and thus it cannot serve as the only option 

pricing instrument on the markets similar to Russian, it has an advantage of being 

more precise than Black-Scholes model during the market turmoil. This feature 

may be interesting to the investors on Russian market. 

Further research on this topic may concentrate on other specifications of 

GARCH processes for option pricing. Moreover, the closed-form solution of the 

GARCH model developed by Heston and Nandi (2000) may be estimated if the 

way to overcome log-likelihood estimation problems is found. 
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Finally, other option pricing models may be considered for applying on Russian 

market. For example, although being hard to calibrate, stochastic volatility models 

may appear to produce precise results. 
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