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Abstract 

ON THE INVESTIGATION OF 
RESIDENTIAL HOUSING PRICE 

BUBBLES IN MINSK 

by Dzianis Shauruk 

Head of the State Examination Committee: Ms.Svitlana Budagovska, 
Economist, World Bank of Ukraine 

The present research is devoted to the inspection of the existing techniques of 

detection of bubbles. These techniques are grouped into statistic and econometric 

ones and applied to a specific data set of the specially weighted offer prices and 

rents for residential property in Minsk. The underlying idea behind the research is 

to attempt to reveal the relevance of the techniques in their ability to identify 

rational bubbles at the ideal case or identify explosiveness of the series at the 

moderate case. 
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I n t r o d u c t i o n  

In his paper on real estate price bubbles Roehner (1999) assesses the 

magnitude of capital gain stemming from the real estate price bubble arising in 

Paris at the early 90-s of the previous century and finds that the gain was close to 

the magnitude of French GNP at that time. This allows him to make an inference 

on a serious impact of real estate price bubbles on a particular economy. 

Especially, it becomes evident when the bubbles burst harming financial system 

of an economy and raising the possibility of unfolding economic or financial 

crisis (Roehner, 1999). 

The aim of the research to be conducted is revealing the existence of 

bubbles in the economy of Belarus and assessing their possible influence on 

GDP. The GDP growth is very strong in Belarus if compared to other NIS 

countries however the index of economic freedom is constantly being falling in 

the country. This situation is considered to be anomalous (the two indices are 

positively correlated in the rest of NIS), therefore it was given the name of 

“Belarusian Puzzle” (Daneiko (2003) et al., 2003,p.112). There are many 

evidences of exaggerating GDP growth figures in the Republic the main of which 

is manipulating prices. But many economists still wonder by how much the 

exaggeration is compensated with the unreported value added created in the 

“shadow economy” (Daneiko (2003) et al., 2003, p.112). So, the question of by 

how much the growth really persists in Belarusian Economy and by how much 

the growth is a mere exaggeration remains unanswered. In the thesis the price 

side of influencing GDP will be investigated. The direct consequence of the GDP 

exaggeration by increasing price level may be the creation of bubbles in certain 

sectors of the economy.  

In the literature devoted to investigation of bubbles existence asset price 

bubbles are investigated. Moreover in the scope of most papers an examination 

of divergence between “real” values of assets and their actual price is examined. 
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Fortunately, there is an object for such investigation in Belarusian economy 

regardless to heavy influence of government on all markets including the stock 

market. The rationale for choosing residential housing market as the main object 

of research is stipulated by reasons of relatively less severe regulation of the 

market by the government, as well as relatively bigger attractiveness of the market 

for domestic and foreign investors. The former reason is beneficial for the 

purposes of the research to be conducted in the sense of relative reliability of the 

data available on the real estate market. The letter reason is beneficial in the sense 

of applicability of the existing analytical tools developed for market economies.   

But the main reason of course is the perception of the market as merely 

the only investment opportunity in Belarus. Thus foreign exchange market 

appears to be too predictable with its constantly growing exchange rate for 

investors to gain from participating in it; money market appears to be heavily 

regulated by the Central Bank thus rising political and regulatory risks much 

higher in comparison to the expected profits; capital market may be characterized 

by the absence of corporate bonds issuing due to poor legislation as well as 

underdevelopment of the market for corporate shares due to the rule of “golden 

share” (i.e. the rule under which any share of government in an enterprise gives 

the government’s representatives the voting right which dominates the rights of 

non government shareholders regardless to the magnitudes of shares of the latter 

in the company’s stock). Such situation created prerequisites for strong 

speculative tendencies on the market for real estate which may be explained by a 

rush of investors for allocating hot money in this highly attractive market in the 

fear of growing possibility of Government intrusion to the market which may 

result in making it as unattractive as the markets mentioned above. 

Another rationale for choosing residential housing market for 

investigation is the possibility of implementing achievements of the existing 

rational bubbles models, since the investigation of real estate prices in Belarus 

may well be fitted into the models. The similarity arises in very close nature of 
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securities and residential housing trading, for example. Thus, there exist both 

primary and secondary markets for residential housing which operate similar to 

the markets for securities. Moreover, the rental payments obtained by residential 

housing owners may well be compared to the interest gained by holders of shares 

or bonds. 

The rationale for using a bubble theory is even more attractive provided 

the general definition of the bubble stated by J. Stigliz: “if the reason that the 

price is high today is only because investors believe that the selling price will be 

high tomorrow-when “fundamental” factors do not seem to justify such a price-

then a bubble exists” (Stiglitz, 1990). And there indeed exists a situation under 

which the residential housing prices in Belarus are growing well in accord with 

the property prices growth in the USA and certain European countries while the 

growth of consumers’ income is far behind of that observed in the regions just 

mentioned (The Great Illusion, 2004). 

The basic model will be based on rational expectations bubbles approach 

similar to that proposed by Blanchard and Watson in the simplest form of which 

the bubble term Bt follows an explosive path with certain growth rate a: Bt=a·Bt-

1+εt with parameter a>1 and IID εt stochastic component with O mean and 

constant variance σt2 (Lux et al., 2003).  

Two different approaches which will be used for bubbles detection and 

will concern the estimation of the tails of distribution of real estate prices. These 

approaches will embody in actual estimation of the tails as well as in 

implementation of bootstrap technique for the same purposes due to not very 

sufficient number of observations (this fraction of research will be presented in 

the first two parts of the thesis). 

For determining the presence of bubbles in real estate prices time series 

the GMM will be used (this part of research will be presented in the last part of 

the thesis).  
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In the recent time much attention has been turned to the real estate 

market in Belarus which resulted in enacting of a Presidential Act forbidding the 

reselling of residential property in the course of 2 years (Sinyak N., 2003). This 

was the reaction to consequences of permanent real estate price growth in 

Belarus the causes and consequences of which are still to be investigated. Thus 

the definitions given above reflect the current situation on the real estate market 

in Belarus quite precisely (Sinyak N., 2003). For the time being the index of real 

estate prices calculated for Minsk, the capital of Belarus, continues to grow with 

the forecasts of its slowing down from the year 2003 has not still become reality 

(Sinyak N., 2003).    
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L i t e r a t u r e  R e v i e w  

In the literature review “from general to specific” approach is going to be 

used. In the very beginning the rationale for reviewing exactly that literature will 

be stated and then the review itself will follow.  

Before introducing pure economic issues considered in the literature the 

attention is to be drawn to a more technical parallel between the former Soviet 

and the present Belarusian situation: the availability of relevant data. It is broadly 

believed that such information was collected in the former USSR for the 

purposes of proper planning and governing. But the information was not 

presented to the public. Only some ideologically transformed figures were made 

publicly available instead with suppression of negative social-economic data as 

well as data on shadow economy (Gur Ofer, 1987, p. 1770). The same situation 

may be observed today in the Republic of Belarus where official figures on 

economic performance look encouraging but the figures are broadly considered 

as not reliable (Daneiko, 2003, p.112). 

Naturally, one of the main sources of doubtful information is that of 

GDP growth. Both in the former USSR and in today’s Belarus the figures on 

GDP growth are reported to be substantial (Daneiko, 2003, p. 112; Gur Ofer, 

1987, p. 1777). The sources of Soviet economic growth included among other 

things growing inputs accompanied with declining growth in productivity (Gur 

Ofer, 1987, p. 1782). The above factor may be well applied to the growth strategy 

of the present day Belarus (Daneiko, 2003, p. 118). But what is more important in 

the growth strategy of the former USSR and, possibly, present day Belarus is the 

exaggeration of growth rates by price increases (Daneiko, 2003, p. 116; Gur Ofer, 

1987, p. 1784). This appears to be a very useful implication for the purposes of 

the research to be conducted. The reason for this is the possibility of asset price 

bubbles appearance in the economy of Belarus and, what is more fascinating, the 
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appearance of possibility of investigation of their existence and their possible 

influence on growth figures. 

There exists a reach selection of literature devoted to detecting the 

appearance of asset price bubbles in market economies. The actual thorough 

investigation of price bubbles started from the research conducted by Blanchard 

and Watson in late 70-s early 80-s of the previous century (Blanchard and 

Watson, 1982). And since then much controversy has appeared concerning the 

ability of the existing models to appropriately test for the existence of bubbles in 

certain time series. Thus a substantial part of empirical research has focused on 

explosive trends in asset prices time series. However, many authors doubt 

whether the tests applied for these purposes truly reflect the existence of bubbles 

(Lux Thomas, 2003, p. 589; Robert P. Flood et al., 1990, p. 87). But some of 

them still admit that the tests for bubbles are very important specification tests 

(Robert P. Flood et al., 1990, p. 99). For the present time three areas of bubbles 

tests implementation has been developed. Among them are securities market 

speculation bubbles, exchange rate bubbles and price level bubbles. For the 

models of the first type we have the following specification: qt=qtf+Bt  where qt 

represents the current price of an asset, qtf represents its fundamental price 

calculated on the basis of discounted expected future returns using real interest 

rate, Bt is the bubble term which is the expected discounted value of a bubble 

(Robert P. Flood et al., 1990, p. 88). Interestingly, some researches admit that not 

rejecting of the existence of bubbles after applying testing procedure implies 

misspecification of the model (Robert P. Flood et al., 1990, p. 89). The interesting 

model on price level bubbles was developed by Flood and Garber (Robert P. 

Flood et al., 1980) under which authors could not reject the hypothesis of bubble 

existence but there were some specification inconsistencies as well (Robert P. 

Flood et al., 1990, p. 91). Another interesting approach concerning price level 

bubbles models includes two estimates of a parameter which may enclose 

bubbles and the application of the Hausman specification test which in effect 
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becomes test for bubbles (Robert P. Flood et al., 1990, p. 92). Finally, the 

exchange rates bubbles models may be tested using the techniques described 

above, but the indeterminacy of whether such tests really discover bubble 

existence pertains in this case as well (Robert P. Flood et al., 1990, p. 94).  

The most recent papers make an attempt not to confound the 

specification error of the model and the bubbles, but there is doubtful whether 

such endeavors lead to the desired result (Hooker, 2000). 

 In the light of the difficulties mentioned above Thomas Lux proposed a 

test for bubbles on a more elementary level by investigating the kurtosis of 

financial time series (Lux Thomas, 2003, p. 590). Interestingly, he showed that the 

critical value for coefficient indicating the existence of bubbles implies 

nonexistence of mean and variance of the data examined (Lux, 2003, p. 592).  

However, in the present thesis an extensive use of a more applied 

coefficient, known as Hill estimator, will be exercised (Hill, 1975). 

The estimator is used for detecting fatness of tails. And it has been 

increasingly used for applied research. In line with the direct application of the 

index more sophisticated methods have been developed. Thus, a modification of 

the index for small samples was proposed by Huisman et al. (Huisman, 2001). An 

even more advanced methodology of the estimate bootstrap technique was 

developed by Pictet et al. (Pictet, 1998). All the above the above techniques are to 

be implemented for the purposes of the current research.   

Together with the approach mentioned above a purely econometric view 

of the problem is presented in the paper on investigation of residential price 

bubbles in Hong Kong (Chan, 2001). The authors use GMM for the purposes of 

the paper and their methodology will be thoroughly followed in the thesis. 
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D a t a  D e s c r i p t i o n  

Due to the devotion of core research to real estate price bubbles 

investigation the main set of data which is being examined is the index of average 

real estate prices in Minsk, the capital of Belarus, calculated by the Belarusian 

Society of Appraisers (BSA) on a monthly basis. The index represents the average 

price of a square meter of residential housing over the whole scope of the 

housing supply.  

The actual values of the index have been available starting from the year 

1999 but the weekly information is only available starting from the year 2000: 

Average Real Estate Prices (Belarusian Community 

of Appraisers Index ):average price in US Dollars per 

square meter in the city of Minsk from 04.01.02 to 

25.02.05
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Figure 1  

   

For the purposes of the current research the value of the index starting 

from the start of the year 2002 will be of particular interest since this period of 

real estate prices growth is suspected to contain a bubble. In the period 
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mentioned weekly data will be used. Thus the period under investigation will 

contain 164 observations. 

The next stage of research is going to be devoted not only to investigation 

of capital gains from holding residential property but also to rents on this kind of 

asset. The data on prices for renting apartments in Minsk is easily obtained from 

the relevant sites or newspapers. Hence, there are 164 observations on renting 

one room apartments and the dynamics is presented below: 

Average Rental Prices per One Room Apartment in 

the city of Minsk from 04.01.02 to 25.02.05
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Figure 2 
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C h a p t e r  1  

THE APPLICATION OF THE BOOSTRAP TECHIQUE TO 
ESTIMATING THE HILL INDEX OF THE TAILS FATTNESS OF 

REAL ESTATE PRICE INDEX (ITS) DISTRIBUTION 

In the present paper a series of real estate prices index (ITS) is to be 

investigated for the presence of a rational bubbles. This index represents a 

weighted average of real estate prices (per square meter) in Minsk, the capital of 

Belarus, over the whole scope of supply of residential housing. The index is 

calculated by the Belarusian Society of Appraisers on a weekly basis. The 

calculation of the index (ITS-index of total supply) is implemented according to 

the following formula: 

           

∑

∑

=

==
n

i

n

i

Si

Pi

ITS

1

1                                                                                            (1)   

, where 

Pi - is the price of a specific apartment supplied in the whole sample of 

statistical data processed in a given period; 

Si – is the total area of a separate apartment in the whole sample of the 

statistical data processed in a given period (Trifonov et. al., 2001). 

The index has been experiencing considerable growth starting from the 

3rd quarter 2000 but the actual weekly data is available only starting from the year 

2002. There have been 164 observations available. This is a sufficient number of 

observations for making inference for the purposes of current research but there 

is still a possibility for a small sample bias of estimates. Thus, some additional 

computational techniques will be applied to enhance the inference. The 

description of the techniques will be provided later. 

The theory of price bubbles started from the research conducted by 

Blanchard and Watson in late 1970-s early 1980-s (Blanchard et al., 1982). In the 
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seminal work financial time series were given characteristics which are still 

considered as strongly attributable to financial data. One of these characteristics is 

leptokurtosis, or excessive fourth moment of financial returns (Blanchard et al., 

1982, p.25; Lux et al., 2003, p. 590). 

So, the natural way to start investigation for speculative bubbles is finding 

kurtosis coefficient for the first difference of the real estate prices index (ITS). 

The calculations were processed in Stata and the resulting coefficient was as 

follows: 

•     variable   |  kurtosis 

• ----------------------- 

•     IndexDif  |  6.999065 

• ------------------------ 

Table 1 

 

             , where IndexDif stands for the first difference of ITS and the number 

represents the index kurtosis.  

As we can see from Table1, the kurtosis coefficient is well in access of the 

kurtosis coefficient for normal distribution the theoretical value of which is equal 

to 3 (Blanchard et al., 1982, p.25). So, an immediate conclusion follows that series 

under consideration is indeed leptokurtic.  

           The graphical representation of the above statement is even more 

convincing: 
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Figure 3 

Using kernel density estimation of the series of the 1st differences of ITS 

index and comparing it with the normal distribution density confirms the excess 

kurtosis of the empirical time series (See Figure 3).  

 The less elementary characteristics of financial time series derived from 

the model a la Blanchard and Watson has given a rise for much controversy in 

conclusions concerning the ability of the existing models to appropriately test for 

bubbles in certain time series. Thus a substantial part of empirical research has 

focused on explosive trends in asset prices time series. However, many authors 

doubt whether the tests applied for these purposes truly reflect the existence of 

bubbles (Lux et al., 2003, p. 589; Flood et al., 1990, p. 87). 

In the light of the difficulties mentioned above Thomas Lux and Didier 

Sornette proposed to test for bubbles on a more elementary level by investigating 

not only the kurtosis of financial time series but also the tails of their distribution 

(Lux et al., 2003, p. 590). The tails are investigated for being “fat”, or for having 
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more than exponential decline in probability mass (Lux et al., 2003, p. 590)1. The 

letter characteristic of the series is proposed to be investigated by using 

conditional maximum likelihood estimator known as Hill tail index (Lux et al., 

2003, p. 603). 

The index does not require any specific assumptions about the form of 

distribution but it requires sufficiently large samples since the inference is only 

asymptotically valid (Hill, 1975, p.1163). The Hill Index is calculated as follows: 

in the first step the sample elements are put in descending order xn ≥ xn-

1 ≥ …≥ xn-k ≥ …≥ x1 where k represents the number of parameters in the tail of 

distribution; 

in the second step the index itself is calculated in accordance with the 

following formula: 

            IH=1/
k

1
∑

=

−+− −
k

i

knin xx
1

1 ]ln[ln                                                                (2) 

(Lux et al, 2003, p. 603). 

If the original distribution is fat-tailed it can belong to only one family of 

distributions: 





−
=

− )exp(

0
)(

α
x

xG  
0,0

0

ff αx

x ≤
                                                        (3) 

, where )(xG  is the probability that xn > x  and α = IH is exactly the tail 

index which is the only parameter we have to estimate. The Hill Index is not a 

unique tail index estimator but it has been shown to be the best one in the family 

of such estimators (Pictet et al, 1998, p.289) for fat tailed distributions. The Index 

has also been shown to be consistent (Mason, 1982). Finally, the index has been 

proved to be biased (Pictet et al, 1998, p.297). But fortunately, the bias can be 

corrected for by using non trivial but theoretically justified technique of choosing 

the most appropriate k. This technique will also be more thoroughly explained 

                                                 
1 For the graphical representation of “fat” tails the reader is referred to Picture1 again. It is evident from the 

Picture that the density of empirical distribution is higher then that of normal distribution as we approach 

both the most extreme positive and negative values in the tails. Picture 1.A in Appendix 1 represents kernel 

density estimation of the absolue value of  the 1st differences of the ITS values.   
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below. So, these are the basic justifications behind choosing exactly Hill index for 

the purposes of current research. 

Theoretically, the prevalence of a rational bubble component will lead to 

the magnitude of the index<1 which implies nonexistence of the mean and 

variance of the data (Lux et al., 2003, p. 592). However, empirical findings 

provide the magnitudes in the range between 2 and 4 (Lux et al., 2003, p. 590) 

which may partially be justified by the above mentioned bias. 

At this stage all necessary explanations has been given and the most 

straightforward calculations can be exercised. These calculations concern the 

computation of the Hill Index for empirical data set of the 1st differences of ITS. 

Since, as it was mentioned earlier, the choice of k (the number of observations in 

the tails of the empirical distribution) is not trivial, we will calculate the index for 

each value of k∈   [8; 14] (for values of k smaller than 8 the magnitudes of the 

Index are even higher). The justification behind such a choice of k is simply Hill 

Index reaching its local minimum value on this interval (this is evident from 

Table 2 below where the Hill Index reaches its minimum value for k =12). An 

important note to be made here is that absolute values of the 1st difference of ITS 

has been used which is justified with the use of logarithms for computing the Hill 

Index (see expression (2)). 

K 8 9 10 11 12 13 14 
Hill 
Index 4.96875 3.281744 3.4347 2.684078 2.097045 2.234874 2.246568 
Table 2 

            We can compare these results with that obtained from using Stata 

software. Here the index of regular variation2 is estimated with the help of Hill 

plot by using hillp function developed by Manuel G. Scotto, University of 

Lisbon, Portugal. The plot below shows the values of Hill estimator against 

different values of k. The value of the Hill Index estimator is to be chosen from 

                                                 
2 this is just a more formal way of expressing the feature of equation (3) which can be denoted as regular 

variation with index -α  assuming that  1-F(x)~C
α−

x , where C, α >0 (Hall, 1990, p. 187; Lux, 2003, p. 

590 ). 
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the k-region with roughly horizontal plot. In this case the estimate value fails to 

converge to any horizontal line.  
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Figure 4 

For the time being we obtained two alternative estimates of Hill Index. 

One of these estimates (α =0.62247; α <1) agrees in magnitude with 

theoretically predicted value while the other one (α =2.097045; 2<α <4) agrees 

with empirical findings. Such situation is quite predictable since Hill Index 

Estimator appears to be  

first, only asymptotically valid while we have only 164 observations 

available; 

second, even asymptotically the Hill Index Estimator remains biased. One 

way of challenging with this unfortunate situation is to use bootstrap method 

proposed by Pictet et al (1998). But before presenting the actual results I should 

give some theoretical background behind the method. 

As it was already mentioned, the critical condition for obtaining the least 

biased Hill Index Estimator is choosing the optimal value of k. To show it 

mathematically we first need to present more careful formulas for expectation 



 

 16 

and variance of the estimator. For notational purposes lets denote γ = 1/α . The 

exposition that ensues is an abridged version of a careful derivation presented in 

Pictet et al (1998). 

For some observations X
i
 drawn from c.d.f. F(x) with density 

f(x)=dF/dx and for some y being the value of some k largest observation X k , 

the unconditional expectation of kn,γ  , where n is the sample size, is 

E[ kn,γ ]=

∫

∫
∞

∞−

∞

∞−

=

dyyp

dyyXEyp

kn

kknkn

)(

]|[)(

,

)(,, γ

                                                (4) 

,where ]|[ )(, yXE kkn =γ = ∫ −

x

y

dx
xF

xf

y

x

)(1

)(
ln ,                                     (4.1)     

           )(, yp kn = )()](1)[(
)!()!1(

! 1 yfyFyF
knk

n kkn −− −
−−

                          (4.2) 

The expected variance of the Hill Index estimator around the mean of (4) 

is 

E{[ kn,γ -E[ kn,γ ]] 2 }=

∫

∫
∞

∞−

∞

∞−

=

dyyp

dyyXEyp

kn

kknkn

)(

]|[)(

,

)(

2

,, γ

-E 2 [ kn,γ ]            (5) 

(Pictet et al, 1998, p.292). 

In asymptotic expansion equation (4) gives: 

E[ kn,γ ]= Bkna
k

k
b

+=−
Γ

+Γ

+
−

−

α
α

β

βα

β

α
α

β
1

})]([
)(

)(

1{
1 `

                     (6) 

, where Г( ) is the gamma function, which is a continuous version of a 

factorial part of (4.2) and  

b `=b(1+ο(x 0 ))                                                                                    (6.1) 
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where b is a real number parameter of a specially assumed expansion of  

F(x) and β is a parameter in the following expansion: F(x)=1-ax α− {1+ b `  x β− }                                                  

(6.2) 

with o meaning “of order higher than” (Pictet et al, 1998, p.297). 

The B of equation (6) can be alternatively expressed as: 

]})()
1

[()()
1

(1{)(
1 00

n

k

kn

k

kn

k
a

b
B ο

βα

β

α
α

β

α

β

+Ο+Ο+
+

−=
−

                (7) 

, here O means “of the same order”. 

Finally, the expected variance of the Hill index estimator is expressed as 

follows: 

E{[ kn,γ -E[ kn,γ ]] 2 }= ])[()
1

(1{
1
2

α

β

α n

k

kk
Ο+Ο+ }                                 (8)  

So, the error of Hill Index estimator results into the following expression: 

E{[ kn,γ -
α

1
] 2 }= ( α

β

α

β

βα

β

α
)(

1

n

k
a

b −

+
− ) 2 +

k
2

1

α
                           (9) 

(Pictet et al, 1998, p.298). 

Obviously, the error can be minimized wrt k. 

Such βα

β

βα

α

β

βαα 2

2

2

23

2_

)(]
2

)(
[ +++

= an
b

k                                                     (10) 

Putting the value of 
_

k  back into (9) we obtain the minimum error 

variance (Pictet et al, 1998, p.299). 

Fortunately, equation (10) is empirically computable. The exact procedure 

of this computation is described in Hall (1990). Hall proposed to minimize wrt 

k1  the following expression: ]|}[{min 2

0

*

, 11
1

nkn
k

FE γγ −                                    (11) 

*

, 11 knγ  is computed from the bootstrap resamples of size n1  < n and 

different values of k 1  which are chosen so that to minimize (11); 0γ  is some full 

sample estimate with reasonably chosen k (in our case it will be the inverse of the 

Hill Index from Table 1 for k = 12); and nF  is empirical distribution function. 
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The value of k 1  which minimizes (11) is denoted 
_

k 1   and then it is used to 

estimate 
_

k  which can be found from equation (10) by the following formula: 

^

k = 
_

k 1

αβ

β

+








 2

2

1n

n
                                                                                (12) 

, where 
^

k  is the bootstrap estimate of 
_

k  (Pictet et al, 1998, p.299). 

To clarify the procedure behind estimating (11) lets denote the following: 

^

11 ),( knMSE = ]|}[{ 2

0

*

, 11 nkn FE γγ −  

= 2

0

*

,0

2*

, )|(2)|(
1111

γγγγ +− nknnkn FEFE                                                (13) 

Since 2

0γ  is a constant we should only minimize the first two terms of (13) 

wrt k 1  which in alternative notation can be expressed as 
1

min
k

A 2 - 2 10 Aγ  

, where  

A1= )|( *

, 11 nkn FE γ = ∑
−

=
−

−− ∆−−

1

1

1111

11

11 ),(1

n

i

niin
kkniInkn                       (13.1) 

A 2 = )|( 2*

, 11 nkn FE γ  

= ∑ ∑
≤≤ −≤

−

−− −−×−− −

i nj
jnij kknIijnnnk

1 1

1111

2

11

2

1 )1,()1(){2( 1δ + 

+ njnijn
kknIinn ∆∆−−−

−
)},( 1111

1

1 1                                                      (13.2) 

)/log( 1, +=∆ innini XX ; ijδ  is the Kronecker Delta which takes the 

values of 1 for i=j and 0 otherwise; ∫
−−− −=

x

ba

x dtttbaBbaI
0

111 )1()},({),( , 

0<x<1, is the incomplete beta function (Hall, 1990, p.188-189). 

When applying this methodology to the actual data I took a natural 

question arise: what value of n1  is to be chosen? In Hall (1990) this issue is not 

addressed at all and the only restriction on n 1  is that its value should be less than 

the sample size. Pictet et al (1998) mention that n1  is to be of the different order 
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of magnitude as compared to the sample size. Since the sample under 

consideration contains only 164 observations, I decided to choose subsamples 

form 20 to 60 observations each with the step of 5 observations. Since it was 

questionable which of observations to choose, an average value has been taken 

from each subsample of 20 to 60 observations starting from the first 20 to 60 

observations and ending with last 20 to 60 observations with the shift of 1 for 

each estimation. I bootstrapped the sub samples by making 100 replications then 

I took average value of each observation over these replications and used these 

values for minimizing (13) with 0γ  = 0.476861488 (see Table 2). Than each ki 

was substituted into (12) and the resulting average value over all ki’s was chosen 

as the estimate of 
^

k . When computing 
^

k  from (12), the only unknown 

parameter left was β which Pictet at al (1990) recommend setting equal to 1 

(Pictet et al, 1998, p.304). Thus, we obtain the following values of 
^

k : 

n1  20 25 30 35 40 45 50 55 60 

^

k  
12,799 

 
15,028 

 
17,531 

 
17,973 

 
20,183 

 
21,008 

 
20,441 

 
20,089 

 
20,746 

^

α  

(95% 

conf. 

interval, 

(8))  

 
2,2348 
 
(±0,234) 

 
2.2979 
 
(±0,22) 

 
2.0038 
 
(±0,23) 

 

 
2.0038 
 
(±0,23) 

 

 
1.9611 
 
(±0,223) 
 

 

 
1.9442 
 
(±0,22) 

 

 
1.9611 
 
(±0,223) 
 

 

 
1.9611 
 
(±0,223) 
 

 

 
1.9442 
 
(±0,22) 

 

Table 3 

So, the bootstrap technique provides an estimated value of 

^

α approximately between 2 and 2,3.3 Of course there are further speculations 

possible with the values presented in the table above for obtaining the desired 

estimate. Thus, the most frequently reported estimate could be chosen or an 

                                                 
3 Most part of the computations has been conducted in MatLab, the detailed codes presented in the 

Appendix2. 
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average of the most frequently reported estimates may be computed. Finally, the 

average 
^

k  can be found and then a single estimate of 
^

α computed. But this gives 

basically same results. 

Interestingly, there has been found another method of choosing optimal 

k in the course of writing making estimations for this section. Thus, k may be 

chosen from the region on the Picture 1 where the tails of the sample distribution 

become “fatter” than those of normal distribution (I also refer the reader to the 

Picture 1.A in Appendix 1 for one tail representation). Thus, by visual inspection 

of both Figure 3 and Figure 3.A it becomes clear that the tails of our sample 

distribution become fatter for the values of first differences in ITS index slightly 

less then 20. The three candidate values with corresponding values of k and 
^

α  

are presented in the table below: 

The Value of the First 

Difference of ITS Price 

Index 

The Corresponding 

Value of k 

The Corresponding 

Value of 
^

α  

17,6 
11 

2,684078 

17,9 
10 

3,4347 

20,3 
9 

3,281744 
Table 4  

Obviously, the bootstrap technique gave the lower values of 
^

α  (which 

implies fatter tales) and approximately two times longer tales. But the technique 

reported in Table 4 may be at least applicable for choosing the “reasonable” value 

of 
^

α  to be used in estimation of equation (13). 

The results presented in Table 4 will appear even more interesting after 

comparing them with the estimates of the following section. In the following 

section another technique of obtaining estimates especially for small samples will 

be examined. This  technique was proposed by Huisman et al. who developed a 

modified Hill Estimator which is calculated as a special kind of average (OLS) 
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and allows avoiding the problem of choosing k (the number of parameters in the 

tail of distribution). This alternative estimator is feasible only for relatively small 

samples (more than 100 observations, which is exactly our case) (Huisman et al., 

210).  
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C h a p t e r  2  

SMALL SAMPLE ESTIMATE OF THE HILL INDEX 

In the previous section an elimination of small sample bias has been 

conducted via the implementation of bootstrap technique. This section is devoted 

to alternative technique which has been developed especially for obtaining small 

sample estimates of the Hill Index (Huisman et al, 2001). The latter approach 

avoids the problem of the choice of optimal k by extracting the unbiased estimate 

from the values of Hill index calculated for the whole set of k-s (Huisman et al, 

2001, p.209). The resulting estimate is simply the weighted average of the set of 

Hill indexes each conditioned on particular k. 

From formula (7) of the previous section we saw the exact expression for 

bias of the Hill index estimator for the fat-tailed class of distribution functions 

approximated by expression (6.2). The bias is not zero for all fat-tailed 

distribution except for Pareto distribution which is expressed in (3). Finally, the 

variance of the estimator is expressed in (8). All these formulas combined show 

that small k reduces the bias but large k reduces the variance. From Picture 2 of 

the previous section we can see an almost linear increase in Hill estimator for 

more than a half of k values which allows approximating for a bias by linear 

function. The last opportunity justifies the choice of α=β restriction in (7). Thus, 

for comparatively small samples the trade-off between bias and efficiency is 

reconciled by controlling for bias and allows expressing (6) as follows: 

IH=β0+β1k+ε(k), k=1,…,κ                                                                   (14) 

where κ denotes the threshold value of k for which linear increase in Hill 

estimator is observed (Huisman et al, 2001, p. 210). In equation (14) a vector of 

conventional Hill indexes is regressed on the corresponding values of k. Since β0 

is the value obtained after adjusting for bias it is exactly the unbiased estimator of 

Hill index (Huisman et al, p.210). 
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Expressing (14) in matrix notation we obtain the following expression: 

 IH
*=Zβ+ε,                                                                                            (15) 

where IH
* is a vector of Hill indexes for values of k chosen as described 

above; Z is 2Xκ vector with ones in the first column and k-s from 1 to κ in the 

second column. Huisman et al argue that the variance of the Hill index estimators 

is inversely related to k one should use WLS instead of OLS for estimating (15). 

They propose the matrix of weights WkXk have the values of k  on the main 

diagonal and zeros elsewhere. As a result the following 2X1 vector is obtained: 

bwls=(Z’W’WZ)-1Z’W’WIH
*                                                                   (16) 

with the first element of bwls being the unbiased Hill index estimator 

which appears to be a simple weighted average of Hill indexes in IH
* (Huisman et 

al, 2001, p.210).  

To provide the robustness of results the necessary computations were 

performed in EViews and Matlab for WLS of (14) and matrices of (16) 

respectively. The following table reports results from estimation in Eviews and  

Dependent Variable: HILL 
Method: Least Squares 
Date: 04/28/05   Time: 21:32 
Sample: 1 76 
Included observations: 76 
Weighting series: SQRTK 

Variable Coefficient Std. Error t-Statistic Prob.  

K -0.022841 0.001659 -13.76895 0.0000 
C 2.843871 0.089731 31.69324 0.0000 

Weighted Statistics     

R-squared -0.005479     Mean dependent var 1.828554 
Adjusted R-squared -0.019067     S.D. dependent var 0.273150 
S.E. of regression 0.275742     Akaike info criterion 0.287259 
Sum squared resid 5.626476     Schwarz criterion 0.348594 
Log likelihood -8.915831     F-statistic 189.5840 
Durbin-Watson stat 0.321142     Prob(F-statistic) 0.000000 

Unweighted Statistics     

R-squared 0.513487     Mean dependent var 2.121484 
Adjusted R-squared 0.506913     S.D. dependent var 0.995816 
S.E. of regression 0.699263     Sum squared resid 36.18373 
Durbin-Watson stat 0.283555    

Table 5  
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Matlab results will be reported later, but here it should be mentioned that there 

are identical to those obtained in EViews. Here κ was chosen to be equal to n/2 

with n be the number of observations in the sample. 

One important note to be made here is that neither OLS nor WLS 

account for the resulting autocorrelation of the error term which stems from 

autocorrelation of conventional Hill estimators which are calculated on common 

observations. Huisman et al propose asymptotic standard errors which take into 

consideration this peculiarity. They also show that the standard errors with 

asymptotically plausible properties hold sufficiently well for comparatively small 

samples like the sample under consideration (Huisman et al., 2001, p. 210). 

Huisman et al. take y as increasing order statistics forming a vector of the 

size ((κ+1)X1) with y(i)=ln(x(i)) and i=n- κ,…,n. From (2) we can see that the Hill 

index estimator is a linear combination of y’s which allows to express its inverse 

as (IH
*)-1 = Ay. The transformation matrix A is of the size ((κ×κ)+1). Then, to 

estimate covariance matrix for the set of the inverses of the Hill index estimates 

Ω we need to estimate the covariance matrix of order statistics in y, which is 

denoted Σ. The expression which connects the two matrices is Ω=AΣA’. 

In general, increasing order statistics z(i) , i=1,…, κ+1, from the sample 

of size n asymptotically have multivariate normal distribution with mean µ(i) and 

covariances between order statistics  z(i) and z(j) (j≥i) of ν(i,j) (Cox and Hinkley, 

1974). Here, 

µ(i)=ln((1-p(i))-1/α), where p(i) is approximated by i/n                            (17) 

ν(i,j)=
))(1())(1(

)()()()(

))(1)((
ji

ijiin

jpip
αα µαµα +−+−

−
 for j≥i.                                 (18)  

In formulas (17), (18) Pareto distribution is assumed with cdf F(x)=1-x-α , 

x>0, for which α = IH and corresponding pdf’s are expressed in the denominator 

of (18) (Huisman et all, 2001, p. 215).  
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Formulas (17), (18) completely define the covariance matrix Σ. Matrix A 

can be shown to have the following form: 























−

−

−

−

κκκκκκ /1/1/1/1/1/11

.....................

3/13/13/110...0

2/12/1100...0

11000...0

                                       (19) 

(Huisman et all, 2001, p. 215). 

Thus, we can now compute Ω=AΣA’ which is then used in the following 

expression: 

Cov(bwls)=(Z'W'WZ)-1Z'W'WΩW'WZ(Z'W'WZ)-1                               (20) 

Here matrices Z and W are the same as those of expression (16). The 

results of the estimates obtained from matrix expressions (16) and (20) are 

reported in Table 6 below: 

bwls Cov(bwls) 

2.8439 0.00696453754079 0.00006667141430 

-0.022841 -0.00004156417093 -0.00000039789319 

Table 6  

Here we can see that redefined standard errors allow for even more 

significant results as compared to Table 4 above. 

Thus, after applying a number of alternative techniques for obtaining Hill 

index estimates it has now become possible to interpret the first results. Two 

major estimates for the tail index are respectively those presented in Tables 3,4 of 

the previous section and 2.8439
^

=α of the present section. The bootstrap 

estimates of the previous section indicate fatter tail which is closer in theoretical 

value to the rational bubble tale (
^

α <1) while estimates of Table 4 of the previous 

section and the estimate of the current section are close to the empirical findings 

for alternative time series tested for bubbles (Lux, 2003). 
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It must be admitted that the bootstrap technique applied in the Section 1 

may not allow for the elimination of the bias and the resulting estimators are 

slightly downward biased. This possible failure to fully eliminate bias is 

unambiguously due to small sample. This finding agrees with those of Huisman 

et al, which confirm that conventional Hill estimator when obtained by applying 

the technique of choosing k by minimization of MSE overestimates the fatness 

of tails in comparison to the modified one (WLS based) in small samples 

(Huisman et al, 2001, p. 212). So, the estimate of the current section seems to be 

more reliable. But what is more surprising, it is very close to the estimates 

obtained by simple visual inspection of probability density function plot 

(Figures3, 3.A). The value of 2.8439
^

=α is closest to the value of 

684078.2
^

=α form Table 4 with k=11. So, I conclude that the first difference of  

ITS time series has the tails close to those of Student-t distribution with 2 to 3 

degrees of freedom (the theoretical Hill Index for Student-t distribution equals 

the number of degrees of freedom of the distribution (Pictet et al, 1998)). Thus, 

the probability mass is indicative of comparatively fat tails in the distribution 

underlying ITS time series which leaves the possibility for the existence of 

abnormal deviations in housing prices but does not allow for rational bubbles as 

defined by Blanchard and Watson (1982) in the data.    
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C h a p t e r  3  

ECONOMETRIC MODEL FOR DETECTION OF RATIONAL 
BUBBLES IN RESIDENTIAL HOUSING PRICES 

In the previous two sections a more elementary approach has been 

exercised which did not allow to detect rational bubbles in the returns for holding 

residential property but did allow to detect fat tails in the underlying ITS time 

series. This section will differ in two aspects: first, a more sophisticated 

econometric analysis will be applied; second, prices in levels, not in first 

differences, will be analyzed in combination with rents on holding residential 

property. These differences arise from the inappropriateness of the methods of 

the previous two sections when applied to non-stationary time series (ITS in 

levels, see Picture 1) due to stationarity of the underlying time series implied by 

the Hill index estimates (Hall, 1990).   

As it was mentioned in the literature review, the model of rational 

bubbles a la Blanchard and Watson gave rise to three areas of its implementation: 

securities markets bubbles, exchange rate bubbles and price level bubbles. The 

models which are developed for these three areas are frequently interchangeable 

since they stem from one common model and they may be extended for other 

areas in a straightforward way, provided the structure of pricing assets is similar 

to that of the three areas mentioned above. So, in what follows, an as close as 

possible replication of the procedure applied by Chan et al (2001) will be applied. 

In their paper Chan et al detect price bubbles in Hong-Kong residential housing 

market with the extensive use of the techniques originally developed for analyzing 

Cagan hyperinflation model (Durlauf and Hooker, 1994). 

In the paper by Chan et al (2001) property is treated as an investment the 

current price of which is determined as the present value of expected current rate 

and expected next period price: 
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Pt=δE(Dt+Pt+1|Ωt)                                                                               (21) 

here Pt denotes real current value of property which is obtained by 

discounting rationally expected (E) rent Dt and next period price Pt+1 conditional 

on the currently available information set Ωt at ex ante constant real rate δ. 

By recursively substituting for E(Pt+1+i|Ωt+1) into (21), using the law of 

iterated expectations and imposing transversality condition 
∞→i

Lim δi E(Pt+1-

i|Ωt+1)=0 on (21) the market fundamental solution for Pt is obtained: 

Pt
f=∑

=

+ Ω
t

i

tt

i
DE

0

1 )|(δ                                                                          (22) 

If the actual price is consistent with the market fundamental solution the 

market fundamental hypothesis can not be rejected. The hypothesis however can 

be rejected if some deviations from the fundamental price occur. These 

deviations can be explicitly incorporated into model specification. Thus, a 

random process  

Bt+1=δ
-1Bt+et+1                                                                                      (23) 

if added to the fundamental solution of (22) will still solve equation (21) 

because fundamental solution is only particular solution to the problem (Chan et 

al, 2001, p.63). In (23) Bt stands for rational bubble provided that δ
-1>1, and et+1 

stands for bubble innovation term which is assumed to be orthogonal to the 

information set Ωt. 

Thus, in addition to particular market fundamental solution to equation 

(21) the general solution can be added: 

Pt
g=Pt

f+Bt                                                                                             (24) 

Up to this moment the exposition was well in line with that of Blanchard 

and Watson (1982). A novel term to their set up is the unobserved component of 

the price levels St, which denotes misspecification error. This misspecification 

term denotes further deviations of actual price Pt from fundamental solution Pt
g 

and allows explicitly representing the actual price as the sum of the three 

components: 

Pt=Pt
f+Bt+St                                                                                         (25) 



 

 29 

where the last two terms Bt and St denote the total model noise. 

Durlauf and Hall (1989) and Durlauf and Hooker (1994) developed the 

technique of noise extraction via implementation of flow and stock tests. 

For carrying out the flow test let us consider the perfect foresight 

fundamental price (see (22)): 

Pt
*=∑

=

+

t

i

t

i
D

0

1δ                                                                                       (26) 

E(Pt
*|Ωt)= Pt

f and since Pt
f is orthogonal to Ωt by construction, so is Pt

* 

and the stochastic term by which they will differ (νt-rational expectation forecast 

error) thus is also orthogonal to the information set Ωt and 

Pt
*=Pt

f+νt                                                                                              (27) 

Expressing Pt
f from (27) and substituting it into (25) yields: 

Pt-Pt
*=Bt+St-νt                                                                                       (28) 

The quasi difference φ(Pt- Pt
*) of (28) is taken in order to eliminate the 

predictable part of the bubble component (Bt), where φ=-(1-δL
-1). And the quasi 

difference is expressed as follows: 

rt+1=φ(Pt-Pt
*)                                                                                         (29) 

By rearrangement the following expressions can be obtained: 

rt+1=φ(St-νt)+δet+1                                                                                  (30) 

rt+1=δPt+1-Pt+Dt                                                                                    (31) 

Due to expression (31) rt+1 is known as the excess return on holding 

property. 

Now, since the information on rt+1 is available (we have average prices 

(ITS) and average rents (Dt) and δ will be calculated a bit later), the flow test can 

be conducted. Let Lt(x) denote the information set available at time t and be a 

subset of Ωt. By projecting rt+1 onto Lt(x) we can capture the fitted value of φ(St). 

This becomes possible because νt and et+1 of (31) are orthogonal to Lt(x) by 

construction. Thus, if the projection of rt+1 onto Lt(x) is not zero we can claim 

that specification error is present in the data. Putting it in other words, failing to 

reject the null hypothesis of zero projection of excess return on holding property 

to the information set signals about the presence of specification error St. 
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The last thing to be done before the implementation of the flow test is 

obtaining δ, which is ex ante constant discount factor. Due to the use of 

orthogonality conditions in constructing the model this is naturally done via using 

GMM and imposing the following orthogonality condition: 

E[Lt(x)’rt+1(δ)]=0. 

The results are presented in the Table 7 below. 

Dependent Variable: Implicit Equation 
Method: Generalized Method of Moments 
Date: 05/15/05   Time: 21:01 
Sample(adjusted): 1/04/2002 2/18/2005 
Included observations: 164 after adjusting endpoints 
Kernel: Bartlett,  Bandwidth: Fixed (4),  Prewhitening 
Simultaneous weighting matrix & coefficient iteration 
Convergence achieved after: 6 weight matrices, 7 total coef iterations 
C(1)*PRICE(+1)-PRICE+DIV 
Instrument list: PRICE DIV  

 Coefficient Std. Error t-Statistic Prob.  

C(1) 0.887058 0.001254 707.5187 0.0000 

Mean dependent var 0.000000     S.D. dependent var 0.000000 
 

S.E. of regression 9.632724     Sum squared resid 15124.67 
 

Durbin-Watson stat 1.759282     J-statistic 0.068242 
 

Table 7 

In Table 7 Lt(x) is represented by the current values of housing prices 

(represented by ITS index) and rents (both in levels) which are used as 

instruments. And rt+1(δ) is simply the RHS of (31) where C(1) stands for the δ 

which is to be estimated. 

The procedure behind the estimation is designed so as to minimize the 

correlation between Lt(x) and rt+1 as much as possible which is alternative to 

varying δ so as to minimize J statistic (bottom right corner of the Table) (Hansen, 

1982). In line with Chan et al (2001) an automatic bandwidth selector has been 

chosen (Newey and West, 1994). The prewightening procedure has been used 

before applying GMM to reduce autocorrelations in the parameters. 
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The estimated orthogonal constant discount factor δ is indeed a very 

plausible assumption provided that the real interest rate on national currency 

term deposits in Belarus has been constant starting from the year 2001 (NBB, 

2004). A more controversial result is that for the period of ITS index calculation 

real rate of return on residential housing market appears to be 12.7% per week 

which is abnormally high if compared to money deposit rate of 0.7% per month 

(NBB, 2004). However, the underlying procedure aims at finding orthogonal δ 

and not at estimating the existing real rate if return.  

To test the appropriateness of over-identifying restrictions for GMM 

estimation J-test is applied (Hansen, 1982). Under the hypothesis that the 

restrictions are satisfied multiplication of J-statistics by the number of usable  

Elements of 

Lt(x)   

OLS estimates of slope 

coefficients  

Standard errors  Wald test for 

orthogonality 

(the slope 

coefficients are 

jointly equal to 0) 

∆Pt, ∆Dt  -0.351011 0.546010 
 

0.084786 0.115447 18.80331 
 

-0.393881 0.703875 0.085477 0.163802 ∆Pt, ∆Dt,  

∆Pt-1, ∆Dt-1 -0.198867 0.265182 0.084913 0.162735 

11.75149 
 

-0.387237 0.742866 0.085343 0.165421 

-0.226711 0.368557 0.086349 0.212940 

∆Pt, ∆Dt,  

∆Pt-1, ∆Dt-1,  

∆Pt-2, ∆Dt-2 -0.160331 0.142334 0.084725 0.164183 

8.659480 
 

-0.383229 0.768681 0.081818 0.172229 

-0.221102 0.394837 0.084150 0.222486 

-0.170208 0.138970 0.083905 0.218818 

∆Pt, ∆Dt,  

∆Pt-1, ∆Dt-1,  

∆Pt-2, ∆Dt-2,  

∆Pt-3, ∆Dt-3 -0.060862 -0.001599 0.084389 0.176132 

6.432158 
 

Table 8 

observations (N) is asymptotically χ2 with degrees of freedom equal the number 

of the over-identifying restrictions. For the specification of Table 7 the value J*N 
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constituted approximately 11 with p-value equal to 0.010733, which does not 

support the J-test. However, increasing the number of usable observations does 

not change the estimated value of δ by much but only results in higher J value. 

After the estimation of δ it becomes possible to construct rt+1 and 

conduct the flow test. In order to construct the information set we check the 

orthogonality of rt+1 to the information set which in line with Durlauf and Hall 

(1989) is taken to be the first; first and second; first, second and third; and first, 

second, third and fourth differences of Dt and Pt (here ITS stands for Pt). The 

results are presented in Table 8 above. Here it should be mentioned that fro the 

estimation the sub series of 143 values has been taken (up to October 8, 2004) in 

order to retain the last 21 observations for the construction of perfect foresight 

price of stock test below. 

For all four information sets the orthogonality hypothesis is rejected at 

high level of significance. Thus, the flow test provides us with the evidence of 

that specification error is present in the data. But in order to obtain the full 

evidence we also need to conduct the stock test.     

After conducting the flow test and detecting specification error, it is now 

necessary to conduct the stock test which is designed so as to make inference 

about the presence of bubble. The stock test is based on equation (28). The logic 

behind the test is as follows: if projection of Pt- Pt
* on the information set is zero, 

then neither a specification error nor a bubble is contained in the time series (this 

is the null hypothesis); failing to accept the null hypothesis implies that the total 

model noise created by the fitted values of specification error and bubble is 

present in the data. 

Unfortunately, we cannot observe Pt
*, but it is possible to construct the 

empirical analog of its values by imposing certain conditions on the infinite sum 

in (26). This approximation method was proposed by Shiller (1981). And the 

resulting observable analog of Pt
* is: 

∑
−−

=

−
+ +=

1

0

'
tT

i

T

tT

it

i

t PDP δδ                                                                   (32) 
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The most critical aspect about the above expression is the condition that 

the terminal value of PT should not contain a bubble because in this case the 

bubble will be canceled out by Pt
’ and the stock projection will not allow to detect 

it (Flood at al. 1986).  

In some papers the price values of post-bubble period are taken (Hansen 

and Sargent, 1999). In the present paper there is no luxury of obtaining such 

values because the housing prices under inspection have not fallen dramatically 

by the present moment. On the other hand, taking values which are assumed not 

to contain bubbles put additional restrictions on the model. So, we use the last 

observation of the data in line with Chan et al (2001) but instead of weekly prices 

a quarterly price is taken as a terminal value. As a result, the actual projection on 

Lt(x) is Pt- Pt
’. And the estimation outputs are presented in the table below: 

Elements of 

Lt(x)   

OLS estimates of 

slope coefficients  

Standard errors  Wald test for 

orthogonality (the 

slope coefficients 

are jointly equal 

to 0) 

∆Pt, ∆Dt  0.624426 0.044898 0.592621 0.109242 4080.973 

1.002448 -0.122632 1.043550 0.707366 ∆Pt, ∆Dt,  

∆Pt-1, ∆Dt-1 0.682733 -0.069913 1.062315 0.696509 

2523.869 
 

3.089963 -0.970640 1.128492 0.653997 

1.444609 -1.468862 0.926161 0.911962 

∆Pt, ∆Dt,  

∆Pt-1, ∆Dt-1,  

∆Pt-2, ∆Dt-2 1.100820 -0.583285 0.922211 0.627844 

2489.955 
 

2.586702 -0.798914 2.459332 -1.293493 

2.792074 -1.780277 2.729542 -2.180552 

1.460316 -1.417255 1.769175 -1.761500 

∆Pt, ∆Dt,  

∆Pt-1, ∆Dt-1,  

∆Pt-2, ∆Dt-2,  

∆Pt-3, ∆Dt-3 0.361693 -0.355872 0.413553 -0.632581 

2399.215 
 

Table 9  
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As we can see from Table 9, the null hypothesis is rejected for all four 

information sets.  

To sum up, there have been three possible inferences based on the flow 

and stock tests above: 

1) If we failed to reject the flow test hypothesis and rejected the 

stock test hypothesis then the rational bubble would be detected 

in the data; 

2) If we failed to reject both stock and flow test hypothesis, then 

neither specification error nor bubble would be detected in the 

data and fundamental solution would be followed by the data; 

3) If both stock and flow test nulls are rejected (which is our case), 

then we can state that specification error is surely present in the 

data, but the existence of bubbles needs further inspection. 

Thus, if there is bubble term which is in charge for the rejection of the 

null, than some degree of nonstationarity is to be present in the series Pt- Pt
’ 

(Durlauf and Hall, 1994). The following results of the augmented Dickey Fuller 

Unit Root Test present a mixed evidence of non stationarity: 

ADF Test Statistic -3.533124     1%   
Critical 
Value* 

-4.5348 

      5%   
Critical 
Value 

-3.6746 

      10% 
Critical 
Value 

-3.2762 

*MacKinnon critical values for rejection of hypothesis of a 
unit root. 

Table 10 

 As we can see from the Table, the null is rejected somewhere on the 

half-way between 5% and 10% level of significance. So, we can conclude that 

there is some weak possibility of nonstationarity. In order to get an even deeper 

insight we examine the ∆Pt- ∆Pt
’ for nonstationarity. The results are presented in 

Table 14: 



 

 35 

ADF Test Statistic -5.990917     1%   Critical Value* -3.8572 
      5%   Critical Value -3.0400 
      10% Critical Value -2.6608 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     

Table 11 

 The overall conclusion is that there might be some form of 

nonstationarity in the Pt- Pt
’ series, but not in the ∆Pt- ∆Pt

’ series. So, if any 

bubble solution is present to the model, it is non linear one and does not 

correspond to the solution assumed in (23). 
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S u m m a r y  a n d  C o n c l u s i o n s  

The current thesis revealed the difficulties connected with the 

implementation of bubble tests for the purposes of empirical research. Thus, 

econometric approach heavily relies on the assumptions which stipulate the 

resulting inference. While the statistic approach provides much more clear 

evidence of deviations in data distribution but puts restrictions on the minimum 

size of the data set. In any case, the research conducted above allowed revealing 

the abnormal behavior of the residential housing prices in their extreme 

realizations (fat tails). This allows concluding on their explosiveness and increased 

volatility. This conclusion provides the possibility of strong jumps in prices in the 

future. If several such jumps will have downward direction during comparatively 

prolong time period, there will be possible to call the phenomenon a price 

bubble. Rational price bubbles a la Blanchard and Watson have not been revealed 

in the data, but this is only one of many more possible specifications of bubbles 

available. Thus, if the bubbles are redefined as some degree of explosiveness in 

the data we can not reject their presence (here explosiveness is defined as 

increased probability of extreme realizations of the data).  

As for the influence of such extreme realizations on GDP, it is 

unambiguously possible that the bursting bubble may considerably dampen the 

real growth but the exact mechanism of such influence may be a good direction 

for further research. Finally, the abnormal behavior of prices in the case of 

Belarusian economy may be caused not by rational expectations but for example 

by increased difficulty to enter such a prosperous market as that of residential 

housing and its increased concentration which also may lead to unstable path of 

pices. 
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A p p e n d i x  2  

[bootstat,bootsam] = bootstrp(100,'hill1',clipboarddata); 

meanbootstat=mean(bootstat); 

bootstat1=meanbootstat'; 

[Answer]=hill2(164,154,bootstat1) 

, where hill1 is a simple function sorting bootstrap resamples: 

function [c]= hill1(b) 

c=sort(b); 

end; 

hill2 is a self made function on the basis of equations (13, 13.1, 13.2): 

function [Answer]= hill2(n,n1,N) 

r1=1;i=1;j=1;II=(1:n1-1);I1=(II'*II)*(1/n)^2*n*(n-1);  

while i<=n1-1;r1<=n1-1;j<=n1-1;IIII(i)=((n1/n)*1/II(i));A8=diag(IIII); 

A2=(2*ones(n1-1)-diag(ones(size(1:n1-1))));  

J(i)=betainc(1-i/n1,n1-r1,r1-1);J1(i)=betainc(1-i/n1,n1-r1,r1); 

I(i)=betainc(1-i/n1,n1-r1,r1); A4(i)=log(N(i)/N(i+1)); 

III(i)=(1/II(i))^2;  

j=j+1; i=i+1; r1=r1+1; end; 

 

A9=A4'*I;A10=II*A9';A11=A8*A10'; 

A6=triu(A4'*A4), A3=I1*J(1:n1-1)'+diag(II)*J1(1:n1-1)'*n1*(1/n), 

A7=diag(III)*((triu(A2)*A3)'*A6)', 

 

k=1;C=min(A7-2*0.476861488*A11); while (A7(k)-

2*0.476861488*A11(k))>C; Answer=k, k=k+1;end; 

end;
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