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Abstract 

RELATIVE PERFORMANCE OF 
DEA AND SFA IN RESPONSE TO 

MULTICOLLINEARITY AND 
MEASUREMENT ERROR 

PROBLEMS 

by Alena Dubouskaya 

Head of the State Examination Committee: Mr. Serhiy Korablin, 
Economist, National Bank of Ukraine 

This study examines the relative performance of DEA VRS and SFA ML models 

in response to multicollinearity and measurement error in endogenous variables 

problem. We found no significant influence of multicorrelation even for 

realistically high correlation levels (ρ=0.8) in the case of two inputs. Moreover, no 

clear direction of change of performance was observed with the introduction of 

the measurement error into endogenous variables, when the measurement error is 

moderate (not more than 20% of input). 
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C h a p t e r  1  

INTRODUCTION 

Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) 

are two widely used methodologies to conduct productivity analysis. DEA and 

SFA methodologies were first formulated in 60s/70s respectively. Since then they 

are widely used in various fields of economic research: at different levels of 

analysis – at productive unit of the firm, firm, industry, country levels; in different 

fields – labor economics, environmental economics, health economics, financial 

economics; to answer on a wide range of questions – to reveal relative efficiency 

of Decision Making Units (DMU) in the group, to estimate shadow prices of 

non-market goods/evils, to find out major determinants of growth rate slow-

down in the world etc. Just search in Google Scholar gives us 17,500-29,600 

results for papers that use DEA or SFA.  

No wonder that a lot of investigation was made to examine the properties of 

the models in various settings. A number of prominent papers have proved 

analytically nice asymptotical properties of the methods. However, assessment of 

the properties of the models in small and medium samples is complicated. The 

problem is tackled by applying Monte Carlo experiments. There exist two kinds 

of studies of this kind. In the first one, the researches try to mimic artificial facts 

from a particular real-world industry. The aim of such studies is to asses the 

reliability of different methodologies. An example of such a work is the paper of 

Resti (2000). In the second one, researchers fix the problem of interest, such as 

problem of outliers, of high noise in dependent variable, try to investigate its 

influence in its “isolation” and “purity” An example of such a work is the paper 

of Banker et.al. (1993) . In the present work we follow the second approach. The 

 



 

problems under our investigation are multicollinearity and measurement error in 

the endogenous variables.  

A lot of work was done to describe the performance of DEA and SFA in 

response to different problems. The scientists tackled such questions as presence 

of noise, problem of outliers,  for SFA - misspecification of production function, 

misspecification of distribution of inefficiency term, heteroscedasticity in 

inefficiency scores, omission of relevant variables etc. No systematic investigation 

of the multicollinearity problem and measurement error in endogenous variables 

problem was performed yet. In the real-world, however, the named above 

problems are often to encounter. As Andrea Resti (2000)  impartially stated: “… 

previous literature usually does not account for correlation among different 

products: [however] in real life, when a firm produced a large amount of one 

output it is likely to produce large quantities of the remaining ones also”. The 

problem of multicollinearity is believed to have noticeable consequences. Let 

recall the words of Pedraja-Chaparra (1999) et al. :“The issue of correlation 

between inputs (or outputs) has received relatively little attention in the literature. 

However, … it is of fundamental importance…” (the underlining is mine). 

However, the scope of the multicollinearity problem and its consequences for a 

realistic range of correlation coefficients has not been examined yet. The problem 

of measurement error in endogenous variables was not considered in its “purity” 

and “isolation” either. Resti(2000) treated it coupled with a set of other problems, 

so that no specific conclusions on the measurement error problem in endogenous 

variables were made. On the other hand, the measurement error in endogenous 

variables could be treated as a problem of omitted variables. Such studies exist, 

for example, Banker et al. (1996) for DEA and Ruggiero (1999) for SFA. They 

find that both methods are sensitive to the problem of omitted variables. 

However, first, no direct comparison was made between two methods. Second, 

as a rule noise constitutes a small fraction of the observed variables, the above 

mentioned studies investigated the omission of variables of the same scope as the 
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rest endogenous variables of the model. Since, conclusions from Monte Carlo 

experiments are very hard to generalize over its original model set-up, the 

question still exists: whether moderate (realistic) levels of noise constitute a 

significant problem for DEA and SFA and if yes, then, which model is more 

robust to the problem.  To fill the gap on multicollinearity and measurement 

error in exogenous variables problem in the existing literature is the aim of our 

paper. We investigate performance of DEA VRS (with Variable Returns to Scale) 

and  SFA ML (Maximum Likelihood) in small and medium samples: for 25, 50 

and 100 DMU (Decision Making Units) pro sample. 

The novelty of our work is not only in the subject of investigation, but 

also in method. To scrutinized influence of multicollinearity we fix a particular 

level of multicollinearity for each iteration of each experiment. So, for example, if 

multicollinearity of degree 0.5 is under study  then it equals exactly to 0.5 in each 

iteration. In prior works if multicollinearity was inserted in the data generating 

process, it was done by implementing normal distribution of endogenous 

variables, relying on the fact that the sum of two normally distributed variables is 

also a normally distributed variable. In such a case, however, multicollinearity 

only at average  equals to the desired value, which is inappropriate for the small 

samples.  

Unlike many studies, we also apply a uniform distribution for endogenous 

variables and the measurement error in endogenous variables term. Thus, we 

avoid biased conclusions by separating “outlier problem” from our model set-up. 

The paper proceeds as follows: first, we give a brief introduction into 

DEA and SFA methodologies. Then we make a literature review. In chapter 4 we 

illustrate, how large the discrepancy between results from DEA and SFA could 

be, using a real-world data set. Afterwards, in chapter 5 we provide a detailed 

description of the set-up of Monte Carlo experiments. Chapter 6 summarizes the 

results obtained from our experiments and chapter 7 concludes the paper. 
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C h a p t e r  2  

 
A BRIEF INTRODUCTION 

INTO DEA AND SFA METHODOLOGIES 
 
The conceptual origins of productivity analysis could be traced to the 

classical economics. There was noticed, that firms could be inefficient not 

only in allocative, but in pure technical sense. In 1935 Hicks pointed: “people 

in monopolistic positions… are likely to exploit their advantage much more 

by not bothering to get very near the position of maximum profit, than by 

straining themselves to get very close to it”. However, this remark was 

forgotten for a long time. With an impetuous development of neoclassical 

theory an assumption that firms, being profit-maximizers, always use their 

production possibilities in the most efficient way. In other words, it was 

widely believed that perfect technical efficiency is a reasonable assumption of 

real-world behavior of firms, inefficiencies could result only in allocation due 

to imperfections of the markets, such as monopoly, for example. The major 

doubts on such a point of view was cast by numerous reports of empirical 

studies in late 60s about decreases in average costs in American industries 

seemingly not attributable to any changes in organization or technology 

(Jameson, 1972). Thus, possibility of technical inefficiency was proved being 

possible. Intensive discussions in the literature produced several explanations 

of such observed behavior. Among them organizational entropy (X-

inefficiency), bad motivation etc. Parallel to this conceptual disputes on 

existence and origins of technical inefficiency a mathematical definition 

appeared and was developing in the economic literature.  

If firms could be inefficient, we would like to measure it. To move 

further, we should recall the core notions of the efficiency and productivity 

analysis are “production function” and “efficiency”. Productive function is a 
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relation between input and output vectors that shows the maximum product 

obtainable from the input endowment at the existing state of technological 

knowledge. Notion of efficiency was first introduced by Koopmans (1951). 

Guiding by the same logic, as in a Pareto-efficiency concept, the Decision 

Making Unit (DMU) is technically efficient if and only if it cannot produce 

more of some kind[s] of output without producing less of some other kind[s] 

of output, given vector of inputs. Hence, if there exists a possibility to 

increase output[s] given the input endowment or reduce input[s] given 

produced set of outputs then DMU is technically inefficient. 

Based on Koopman’s definition, a logical measure of technical 

inefficiency would be 
i

ioutput
i outputactual

outputpotential
=δ  in output-oriented 

context or 
i

iinput
i inputpotential

inputactual
=δ  in input-oriented context. For output-

oriented technical inefficiency measure, in case, we have several output, they 

should be aggregated in “one general output” by some aggregation function. 

Potential output is naturally to approximate by actual inputs of the DMU. 

Mutatis mutandis, this also holds for the input-oriented context. The further 

discussion would be restricted to the output-oriented context. Note that 

conclusion on the output-oriented DEA could be easily extended on the 

input-oriented DEA. The output oriented DEA was chosen was the 

convenience of the discussion. 

Following this logic, Data Envelopment Analysis (DEA) and Stochastic 

Frontier Analysis (SFA) are two approaches to estimate the potential output. 

Let give an exact mathematical definition of these two approaches. 

Data Envelopment Analysis is a nonparametric technique to conduct 

productivity analysis. It has its roots in seminal works of Debreu (1951), 

Shephard (1953) and Farrel (1957). In the context of this paper (measuring 

technical inefficiencies of DMU’s in the output-oriented context), DEA 
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means implementation of non-parametric technique to approximate the 

aggregated potential output. DEA uses its basic assumptions1 to estimate the 

potential output of the DMU from the output of the most efficient group of 

DMU’s within the sample that are similar to the DMU of interest. In the 

context of the present paper, for DEA with variable returns to scale, DEA 

seeks for the most efficient group of DMU’s within the sample from those, 

whose convex combination of input endowments, being equal to that of the 

DMU of interest, produces not less of each output than the DMU of interest. 

The correspondent mathematical formula is: 

1

0
,0
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,max

1
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 (model (1)) 

To the contrary of DEA, SFA is a parametric technique to conduct 

productivity analysis. It begins its existence from seminal papers of Aigner et 

al. (1977) and Meeusen et al. (1977). ). In the context of this paper (measuring 

technical inefficiencies of DMU’s in the output-oriented context), SFA uses 

maximum likelihood to estimate the production function, given an a-priori 

known functional forms of the production function and a-priori known 

distributions of the noise and technical inefficiency terms. In this work we 

use the model proposed by Aigner et al. (1977): 

( ) vueXfY +−⋅= , where ui Nu σ,0(~  is an inefficiency term, 

),0(~ vi Nv σ is stochastic noise; ( )ixf̂  is estimation of potential output for 

DMU i. 

                                                 
1  

 6



 

Note, that in SFA we cannot directly estimate individual technical 

efficiency scores, thus we use a proxy for it , where )|( i
uieE ε iε  is a 

composite error term ( iii vu +−=ε ). 

The two main differences of DEA and SFA are that the former is 

non-parametric and ascribes the whole deviation from estimated potential 

output to inefficiency (does not take account for noise), whereas the latter is 

parametric and accounts for noise. Let have a closer look to these differences. 

Being a parametric method, SFA relies heavily on the assumptions 

about the functional form of the production function, distributions of noise 

and inefficiency terms, whereas DEA, as a non-parametric method, does not.  

However, when the true functional form of the production function is 

known, SFA allows us to take account for it, which is of great plus. 

DEA ascribes the whole deviation from the potential output to 

inefficiency. Let examine, what could this inefficiency measure be comprised 

of. The economic literature proposes the following explanations: 

1. Measurement errors in measurement of related variables. 

2. Pure random shocks in the production process. As poor 

weather conditions, natural disasters, accidental mistakes 

of workers etc; 

3. Mistakes of the planners, engineers. Common explanation 

is information asymmetry. 

4. Differences in quality of inputs (quality of machines, 

abilities of workers and entrepreneurs etc.) 

5. Temporary losses in efficiency due to adaptation to the 

changed market conditions (Jameson, 1972) 

6. X-efficiency (Leibenstein, 1965 etc.) 

7. Differences in excluded factors of production/outputs 
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Apologists of SFA technique state that the inefficiency due to factors 1) 

and 2) is not of interest for the researchers, moreover, we can “выделить” it 

from the inefficiency measure: “The great virtue of stochastic production frontier 

models is that the impact on output of shocks due to variation in labor and 

machinery performance, vagaries of the weather, and just plain luck can at least in 

principle be separated from the contribution of variation in technical efficiency” 

(Kumbhakar, Lovell (2003)). Relying on the Central Limit Theorem and on the 

assumption that none of the factors, comprising 1) and 2), dominates, we receive 

that this part of inefficiency, called noise, could be captured by a normally 

distributed error term. So, we can “separate” it, given the a-priori known 

distribution of this noise term and the rest of inefficiency (inefficiency term).  

 

 

Table 1. Comparison of DEA and SFA 
DEA SFA 

Nonparametric technique Parametric technique 

Does not account for noise Accounts for noise 
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C h a p t e r  3  

 
A LITERATURE REVIEW 

 
Data Envelopment Analysis and Stochastic Frontier Analysis are widely 

used methods in the management science to measure technical efficiency of 

firms. But they could deliver different results. Some applications of different 

methodologies for the same data set, as those of Chirikos & Sear (2000), Ferrier 

& Lovell (1990) and others, found out that efficiency measurement depends on 

the employed methodology found out that efficiency measurement depends on 

the employed methodology. Thus, for example, Chirikos & Sear (2000) in their 

study of 186 American acute care hospitals received Pearson’s correlation of 

cost efficiency scores received from different methods as low 

as 26.013.0 ≤≤ ρ .  Or similarly, Ferrier & Lovell (1990) investigating 

performance of 575 American financial institutions received Spearman’s rank 

correlation as low as 017.0014.0 ≤≤ ρ . At the same time, there exist also 

studies that show a good compliance between technical scores/ ranks estimated 

by DEA and SFA. For example, Park & Lesourd (2000) received a very good 

compliance of DEA and SFA estimates for cost efficiency scores in their study 

of 64 power plants in South Korea.  A recommendation was spelled in the 

literature to check robustness of the results obtained by one method by another 

one. A natural question arises, however, in which situations DEA outperforms 

SFA and vice versa, when these methods fail and when they produce reliable 

results?  

A number of Monte Carlo comparisons were made to investigate the 

issue. The situations examined in these studies include presence of statistical 

noise, relative size of statistical noise to technical inefficiency, different 

functional forms of production function and true/false assumptions on it, 
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different distributions of inefficiency term and true/false assumptions on it, 

correlation of inefficiency scores with explanatory variables, heterogeneity of 

inefficiency scores, problem of outliers, omission of relevant/ inclusion of 

irrelevant variables etc.  

First of all, comparisons were made to investigate relative performance 

of DEA and SFA in presens of noise. It was expected DEA to be very sensitive 

to noise and perform worse than SFA even in small samples. The evidence was 

different, however. For example, in the experiments of Banker, Gadh & Gorr 

(1993) for DEA and COLS2 DEA was found to be rather “robust” to noise. 

MAD (Mean Absolute Deviations) between efficiency scores from DEA and 

SFA and actual efficiency scores varied between 0.03 and 0.11. They even 

concluded that “DEA produce more accurate efficiency estimates … even with 

remarkably high errors present”. SFA becomes more accurate, according to 

them, only if the noise level reaches ±17% to 45% of output values (depending 

on sample size, technology etc.) or given moderate noise if sample size exceeds 

50. In presence of high levels of noise, however, neither of methods performed 

satisfactorily (MAD [ ]4.0;08.0∈ ). 

Noise was also considered in experiments of Yu(1998) and Resti(2000). 

Yu examined high levels of noise, whereas Resti – “low”, “medium” and 

“high” levels of noise. They both received rather good match of estimated and 

true cost efficiency scores and ranking - 89.062.0,161.0 ≤≤≤ ρMAD  and 

163.0,63.0004.0 ≤≤≤≤ ρMAD  correspondently. The difference of the 

results illustrates importance of other factors that present in the experiments, 

such as number of observations, functional form of the production function 

etc.  

                                                 
2 COLS – Corrected Ordinary Least Squares – a variant of SFA 
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Evidence was also collected on the problem of outliers – points, in 

whose vicinity only few/none observations are available. For these points both 

DEA and SFA become les accurate. DEA VRS tends to treat them as efficient 

(Resti (2000), Yu (1998)). In case of SFA such points influence the slope of 

estimated production frontier and MAD around them is higher than around 

other points (Read & Thanassaillis (1996)). To be more specific, DEA and SFA 

are both inaccurate (fail) to estimate performance of outliers. 

A range of experiments were made to examine the relative performance 

of DEA and SFA, when SFA uses an incorrect functional form of the 

production function (Banker, Charnes, Cooper & Maindiratte (1988), Gong & 

Sickles (1992), Banker, Chernes & Cooper (1996), Ruggiero (1999), Resti 

(2000)). An important conclusion was drawn from these experiments that the 

translog production function, a flexible production function that was suggested 

to use for approximation of the production frontier, when the true production 

function is unknown) delivers highly imprecise estimates if the sample is not 

large enough. The explanation given by Resti (2000) to this phenomenon is loss 

of precision due to multicollinearity between explanatory variables (cross-terms 

of higher orders).  

Effects of inclusion of irrelevant variables and omission of relevant 

ones were treated by Banker, Charnes & Cooper (1996), Ruggiero (1999) for 

DEA and SFA separately. Both methods were sensitive to omission of a 

relevant variable and performed rather robust, when an irrelevant variable was 

included. 

An interesting study was performed by Bojanic, Caudill & Ford (1998). 

They examined, how heteroscedastic noise (σ increases with the size of output) 

influenced the precision of DEA and SFA. In their studies SFA-based 

estimates consistently outperformed those of DEA. Both methods, however, 
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overestimated the inefficiency parameter in the presence of high levels of noise 

and heteroscedasticity. 

Design of Monte Carlo experiments is rather similar from paper to 

paper. Below we will briefly state different patterns of Monte Carlo studies. 

Distribution of noise (if it is considered in the paper) is conventually 

taken as normal. In the study of Resti (2000) noise does not exceed 2% of the 

factor level in 95% of cases ( vσ =0.01; noise is introduced as 

( ) ( )vNvvyy σ,0~,1~ += ). Yu (1998) chooses vσ =0.15 (noise is no more 

than 34% of the output level in 95% of cases, where 

( v
v Nvyey σ,0~,~ = ) i); Banker et al. (1993) considers four different levels 

of noise: low ( vσ =0.0447 and vσ =0.0632, when noise is not more than 9-13% 

of the output level with 95% level of confidence) and high ( vσ =0.14 and 

vσ =0.2, when noise is not more than 25-50% of the output level with 95% 

level of confidence).   The distributions of inefficiency scores could be half 

normal, truncated normal, exponential or their variants (for example, half-

normal with 25% of true outputs on the frontier, exponential with 25% of 

output on the frontier, as in Banker et al. (1993)). In half-normal/truncated 

normal cases standard deviation of inefficiency scores uσ  was set to 0.36 by Yu 

(1998), so that relative importance of inefficiency to noise 
v

u

σ
σ

λ = = 2.4. 

Banker et al. (1993) for their half-normally distributed inefficiency scores took 

uσ =0.2036 so that the mean inefficiency score was 1.15 and relative 

importance of inefficiency to noise varied from  
v

u

σ
σ

λ = =1.018 to 4.55. An 

interesting experiment set-up was used by Bowlin et al. (1985) (he compared 

Ordinary Least Square model with input-oriented DEA), who specified the true 
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production frontier as a linear function Axy = , where A is a matrix of 

coefficients. Inefficiency in this model was introduced by reducing some 

coefficients of matrix A : . Pedrajo-Chaparro et al (1999), who studied 

performance of DEA in different settings (as size of the sample, number of 

factors, degree of correlation between factors) used a simple Cobb-Douglas 

CRS function in their analysis. The studies of Banker with his colleagues (1988, 

1993) implement a piecewise Cobb-Douglas function, i.e. with different 

parameters for 4 different intervals, chosen in such a way so that the 

production function remains continuous. In this way they checked how do 

DEA and 

ijij aa <*

Corrected Least Square model (COLS) react on violation of the 

following their basic assumptions: convexity for DEA and continuously 

differentiability for COLS. In work of Read & Thanassoulis (1996) the true 

production technology was specified as a 1-output Constant Elasticity of 

Substitution (CES) function. Gong & Sickles (1992) used a very flexible 

functional form for their experiments – CRESH technology (Constant Ratio of 

Elasticity of Substitution, Homothetic) with 1 output. Most commonly used by 

researchers production functions as Constant Elasticity of Substitution function 

(CES) and its limiting forms (Cobb-Douglas, linear, Leontief) are just particular 

cases of CRESH. The sample sizes under examination also vary from  study to 

study. Resti (2000) chose 50 and 500-unit samples for her experiments. An 

interesting feature of her studies is that to make the results of Monte Carlo 

more relevant she chose as a backdrop a real-world industry – banking, and 

incorporated in her simulations returns to scale, correlation between different 

product lines. Banker et al. (1993) used samples of 25, 50, 100, 200 units in their 

simulations. Pedraja-Chaparra et al. (1999) considered samples of size 10, 20, 40, 

80, 160. As criteria of comparison MAD, Pearson’s correlation coefficient, 

Spearman’s rank correlation coefficient, sometimes Kendall’s rank correlation 

coefficient are commonly used throughout the papers.  
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Influence of multicollinearity on estimation results of DEA was pointed 

by Pedraja-Chaparra (1999) et al. The authors claimed that “The issue of 

correlation between inputs (or outputs) has received relatively little attention in 

the literature. However, … it is of fundamental importance…”. The logic of 

their reasoning was the following: “If two inputs are positively correlated, then 

– other things being equal – this contribute less information to the DEA 

analysis than if they showed zero correlation”. Indeed, if correlation between 

two exogenous variables equals to one, it is analogous to the situation, when we 

have one explanatory variable less. For SFA Resti (2000) pointed importance of 

multicollinearity in explanation of poor importance of the translog function. 

Overall, as Resti (2000) impartially mentioned, “… previous literature usually 

does not account for correlation among different products”.  Rare papers took 

in account multicollinearity by introducing it in explanatory variables.  Thus, in 

her study of cost-efficiency DEA Resti (2000) mimicked the output vectors 

used for the simulations to the reality by introducing multicollinearity of 0.975-

0.98 in them. Multicollinearity was inserted in data also by Banker (1996). But 

in both cases it was just one value of correlation coefficient for all the 

experiments. However, neither a systematic investigation of multicollinearity 

for SFA and DEA nor a comparison between relative performance of DEA 

and SFA in response to it was performed so far. What concerns measurement 

error in exogenous variables, the only known study for us, that of Resti(2000), 

used “noisy data” for her simulations to mimic reality (measurement error was 

normally distributed and only in 5% cases exceeded 2% of the factor level). 

Once more, it was one pattern of error (distribution, standard deviation) for all 

the experiments. So that to our best knowledge, neither a systematic 

investigation of measurement error in exogenous variables for SFA and DEA, 

nor a comparison between relative performance of DEA and SFA in response 

to them exists. To highlight these issues is the purpose of the present paper. 
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To illustrate, how significant could be discrepancy between results 

based on DEA and SFA Models we apply these methods to examine country’s 

output efficiency scores.  
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C h a p t e r  4  

 
ILLUSTRATION OF DISCREPANCIES BETWEEN DEA AND SFA 

 
As the first step of our analysis and illustration of the significance of 

possible discrepancies in methodologies we compared performance of DEA 

and SFA on real-world data. The data set under examination includes real gross 

output, capital stock and number of working population for 57 countries in 

years 1965 and 1990. The data is taken from Penn World Tables (version 5.6). 

The countries under study are both developing, newly industrialized and 

developed (OECD). Real gross domestic product was constructed from Real 

gross domestic product per capita (RGDPCH) by multiplying it by population 

(POP). Number of workers was received by dividing Real GDP by Real GDP 

per worker (RGDPW). Capital stock was revealed from Capital stock per 

worker (KAPW) by using already computed Number of workers. In Penn 

methodology Real GDP and Capital stock are measured in 1985 international 

prices. 

It is the same data set, as was used by Kumar & Russel (2002) for their 

study of convergence over countries over the time. The authors applied DEA 

methodology for their research. To the contrary, for our illustrative purpose we 

apply both DEA and SFA methodologies and compare them with a set of 

conventual statistics.  

We used an output oriented Acivity Analysis Model (AAM) both with 

variable returns to scale. AAM was specified in the following way: 
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•   for the VRS model;                 
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where Y is the vector 571× of Real GDP, X is a matrix  of 

Capital Stock and Number of Workers. We use a measure 

572×

[ 1;01
∈=

outputpotential
outputactual

φ
] to compare with the SFA model. 

For the SFA a Cobb-Douglas production was assumed with normally 

distributed two-sided error term and half-normally distributed inefficiency error 

term: 

)()ln()ln()ln( 21 iiiii uvLKaY −+++= ββ , ui is a half-normal 

distributed inefficiency term. The specified model was estimated by maximum 

likelihood techniques. We use measure  to compare with the DEA 

VRS model. 

)|( i
uieE ε

 Since DEA in both specifications and SFA we measure the same things, 

we expect their efficiency estimates to coincide. 

Estimations of the models were received with DEAP vers. 2.1 and 

FRONTIER vers. 4.1. 

According to the received technical efficiency scores the countries were 

rank from 1 to 57 in such a way, that countries with the same technical 

efficiency score received the same rank, a country with a higher technical 

efficiency score received a higher rank. 
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Table 2. Results of SFA-model 
 

 coefficient Standard-error t-ratio 
α 5.2 0.237 22.04 
β1 0.5 0.024 20.84 
β2           0.5 0.043 11.80 
σ2=σV2+σU2 0.45 0.099 4.53 
γ=σU2/(σV2+σU2) 0.9 0.028 31.56 
log likelihood function -36.58 
LR test of the one-sided error 
 

48.94 

 

The summary of the results is presented in the table below. In this table 

you can see maximum absolute discrepancies (“-“ direction is when estimates of 

the second models are greater than those of the first, “+” direction otherwise), 

and correlation of the estimates.  

 

Table 3. Summary of the estimation results 

Comparison b/w 
max "-" 
discrepancy country 

max "+"  
discrepancy country 

SFA & VRS_DEA_65 -62.82% India 21.06% Hong Kong  

SFA & VRS_DEA_65_rank -20 
Italy,  
Hong Kong 48 India 

SFA & VRS_DEA_90 -59.11% India 
 
12.11% New Zealand 

SFA & VRS_DEA_90_rank -23 New Zealand 48 India 
 

As we see from the results, SFA produces both larger and smaller 

estimates for efficiency scores. This discrepancy could be substantial, for 

example, India was 100%efficient according to DEA VRS both in years 1965 

and 1990, however, SFA estimated it to be very inefficient (efficency=37.2% 

in 1965 and 40.9% in 1990) . Summary statistics as Spearmen rank correlation 

coefficient (67.5% in 1965 and 65.9% in 1990), Pearson’s rank correlation 

coefficient (75.5% in 1965 and 76.5% in 1990), Mean Absolute Deviation 
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(MAD) also show that correspondence between the results from two 

methods is poor in our case. 

Therefore we have proven on a real data sample that conclusions could 

be substantially different, depending on whether a researcher uses DEA or SFA 

approach. And it is important to specify general recommendations, in which 

situations which model is better. 
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C h a p t e r  5  

 
THE DESIGN OF MONTE CARLO EXPERIMENTS 

 
“…any judgment on the quality of a … modal must be 

made in the light of the purposes for which the results 

are used. In such circumstances, what is ideally required 

is a measure of the expected costs of incorrect 

inferences. In practice, the magnitude of such costs is 

highly dependent on the precise context of the 

application [of the model]. For example, setting 

unachievable targets for a DMU might in one setting 

have few dysfunctional consequences, and might even be 

a speer to innovation and better performance, while in 

another setting it might lead to catastrophic crisis 

management and the collapse of morale”. 

Pedraja-Chappara et al. (1999)   

 

Critical feature of Monte Carlo experiments is dependence of results on 

the problem set-up and difficulty in generalizing conclusions. The first-best 

solution would be to derive analytically properties of the competing models and 

to confirm these conclusions via Monte Carlo method. A lot of progress was 

made in characterizing DEA and SFA, including the proof of consistency of 

DEA, finding confidence intervals etc. But all this is knowledge of asymptotic 

properties of the methods. Their small/medium sample characteristics still 

remain unknown and are very hard to obtain analytically. In the second best way 

is to fix the problem of interest try to investigate its influence in its “isolation” 

and “purity” by Monte Carlo simulation for the range values that are actual to the 
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real world studies. The second best solution would be to design the experiment in 

such a way, that it would resemble the core characteristics of reality, but making 

the experiment set-up rather simple and transparent so that directions of 

dependence on different factors could be easily traced. We choose this second 

approach. 

Our design of the Monte Carlo study includes two separate sets of 

experiments: for studying multicollinearity problem and those for studying 

measurement errors in exogenous variables problem. 

We suggest the following mechanism to be under way in case of 

multicollinearity problem. For both DEA and SFA we see this problem as a 

technical one, which hampers the search of the optimal solution in LP (Linear 

Programming) and MLE algorithms, correspondently. Indeed, if correlation 

between two exogenous variables equals to one, it is analogous to the situation, 

when we have one explanatory variable less. But for each perfectly correlated 

variable we have a separate vector of coefficients, on which optimization occurs. 

The same holds for MLE. Thus, for both methods we expect estimates to be less 

robust and their range of values to be larger with increase in multicollinearity. The 

question is, how severe the reliability of our results deteriorates with 

multicollinearity and if it is so, then which method copes with the problem better. 

For DEA VRS, however, one more factor is in play. By high lower degrees of 

multicollinearity it is expected that more observations would be deemed to be 

efficient. In econometrics textbooks multicollinearity is often considered as 

inevitability with the first best advice to try to increase the sample size in hope to 

reduce the multicollinearity problem. Other solutions include dropping one-

several variables, risking to end up with problem of bad specification. In the real 

life multicollinearity is very much a rule rather than exception. As Resti (2000) has 

pointed: “… previous literature usually does not account for correlation among 

different products: [however] in real life, when a firm produced a large amount of 

one output it is likely to produce large quantities of the remaining ones also”. 
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Measurement error in exogenous variables, even if it is uncorrelated with 

noise or inefficiency terms biases our results in SFA. DEA overall, due to its 

specificity, is sensitive to noise/measurement errors. To feel it, we can conduct a 

simple mental exercise. If all observations are efficient in the world of CRS (1x1) 

technology and we have measurement errors in output (it is equivalent to noise in 

the efficiency score) then DEA would draw the estimated production frontier 

through the observation with the maximal error (see Figure 1). This observation 

with the maximal error will be chosen as a reference point and efficiency scores 

of other firms would be estimated in relation to it. A similar mechanism is in 

work if we have measurement error in inputs. Thus, measurement error problem 

in DEA_CRS tends to be exaggerated. This property is somewhat weaker, but 

also presents in DEA_VRS. For SFA and for DEA the problem of noise could 

be considered as a problem of omitted variables. Indeed, for a simple linear noise 

- linear production function example ( ) vuxbay measured +−++= ϕ , 

where φ is the measurement error in x, is equivalent to 

, hence our model suffers the omitted variable 

φ. Case of omitted variables was examined by Banker, Charnes & Cooper (1996), 

Ruggiero (1999) for DEA and SFA separately, who found both methods to be 

sensitive to omission of a relevant variable. In both studies, omission of an input 

of comparable size with other inputs was examined. Our aspect of study is very 

much different, however. Nobody expects the measurement error to be of a 

comparable size with inputs, otherwise, there would be no sense to measure these 

variables. In our study the size of measurement error is realistically assumed to 

vary from 0 to 20% of the size of input. Moreover, since any researcher conducts 

an eye-check of the data prior to analysis, the usage of infinite distribution for the 

modeling of measurement errors is not very much appropriate. We use a finite 

(uniform) distribution to investigate the problem. In econometric textbooks the 

two solutions are proposed for the measurement errors in endogenous variables 

( ) vubxbaytrue +−−++= ϕϕ
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problem. The first one is to assume it away by suggesting a small standard 

deviation of noise. The second one is to use proxy. However, “in practice it is not 

easy to find good proxies; we are often in the situation of complaining about the 

bad weather without being able to do much about it” (Gujarati (1995) p.470).  

Thus, both problems are rather a rule than exception for the real-world 

data. The question of our study is how severe could these problems be and if it is, 

which model copes better with the problem.  

 

 

α 

y 

estimated
production 
frontier 

x 
Figure 1. DEA CRS in presence of errors of 
measurement 

In both sets of experiments we compare DEA_VRS and SFA_MLE. 

SFA_MLE assumes (correctly) a log-linear production function, half-normally 

distributed inefficiency term and normally distributed noise term: 

(
∧

−+++= uvxxy 2211 lnˆlnˆˆln ββα ) , where ui Nu σ,0(~  is an 

inefficiency term, ),0(~ vi Nv σ is noise term. 
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The main challenge in this approach in estimating of individual 

inefficiency scores is that we need to assess them having just estimates for 

distribution characteristics of v  and u and individual estimations of a composed 

error term . Applying the approach of Jondrow et al., we use the 

following proxy to access individual efficiency scores: 

(
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The true production function is Cobb-Douglas CRS with half-normally 

distributed inefficiency term and normally distributed noise term: 

uvxxy −+++= 21 ln5.0ln5.05.0ln , where ui Nu σ,0(~  is an 

inefficiency term, ),0(~ vi Nv σ is noise term. We use this functional form for 

two reasons. Firstly, Cobb-Douglas production is proved to describe fairly well a 

plenty of real-world production processes. Secondly, it would allow us to make 

conclusions direct and transparent.  

The parameters under variation include: 

• The sample size N=25, 50, 100 

• The standard deviation of the noise term σv=0; 0.02; 0.0447; 

0.0976; 0.158; 0.2 

• The bounds of the measurement error term (for the measurement 

error set of experiments): Abound=0; ±0.25; ±0.5; ±1 

• The correlation coefficient between the explanatory variables (for 

the multicollinearity set of experiments): ρ=0; 0.3; 0.5; 0.8. 
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The relative importance of inefficiency relative to noise λ is realistically set 

to 4.55. Thus, noise does not dominate inefficiency in none of experiments. 

The explanatory variables in the measurement error set of experiments 

are independently uniformly distributed on the interval between 5 and 15: 

, ( )15;5~1 Ux ( )15;5~2 Ux . 

For the multicollinearity set of experiments in order to fix correlation 

between explanatory variables the following data sets the correspondent data sets 

were generated and then pairs of variables were chosen from this set with 

correlation coefficients within a 0.01 range around the desired value (i.e. for 

ρ=0.8, for example, pairs of variables with ( ) [ ]805.0;795.0, 21 ∈xxcorr  were 

treated as acceptable) (see Table 2). 

 

Table 4 Generation of explanatory variables for the multicollinearity set of 

experiments (note, thus generated x2 is also distributed on the interval between 5 

and 15). 

( )15;5~1 Ux , );(22 BAUxax +⋅=   

ρ=-0.5 A=11; B=17; a=-2/5 

ρ=0 A=5; B=15; a=0 

ρ=0.3 A=3.7; B=11.1; a=1.3/5 

ρ=0.5 A=2/5; B=3; a=9 

ρ=0.8 A=3/5; B=2; a=6 

 

Note, that correlation coefficients for (lnx1, lnx2) and (x1;x2) are very close 

to each other; so that, for example., for the generated data set 100x315 

observations for each xi and ρ=0.8, exhibits correlation 

.  ( ) [ ]8045.0;7945.0, 21 ∈xxcorr

Our approach has several advantages over the common approach, where 

input variables are chosen from the normal distributions with the specified 
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covariance matrix. Unlike the common approach, where correlation coefficients 

vary from study to study, on average tackling the desired value, in our study the 

correlation coefficient is fixed in each experiment. Moreover, uniform (finite) 

distribution both of the measurement error and inputs guarantees, that we don’t 

have the problem of outliers. The outliers were proven to have a significant 

impact on the results (Resti (2000), Yu (1998), Read & Thanassaillis (1996)). Thus 

our conclusions will not be biased by the outlier-problem. 

Parameters of distributions of noise and error terms are chosen in such a 

way to mimic possible real-world situations.  The measurement error is included 

in the model as ( )AboundAboundUxx iii +−+= ,~,~ ϕϕ . It varies from 0 

(the benchmark model) to ±1, hence never exceeds 20% of the input level. The 

summary of the noise and inefficiency terms is presented in Table 3. 

 

Table 5. Distribution parameters for noise and inefficiency terms 

 55.4=λ   55.4=λ  

0=vσ  

no noise 

∞=λ  

2036.0=uσ  

186.1=MEANTE  

490.1:%95 <TE ii

0976.0=vσ  

%21:%95 <  

4441.0=vσ  

482.1=MEANTE  

388.2:%95 <TE  

02.0=vσ  

%4:%95 <  

0910.0=uσ  

077.1=MEANTE  

195.1:%95 <TE  

1548.0=vσ  

%35:%95 <  

7043.0=uσ  

946.1=MEANTE  

977.3:%95 <TE  

0447.0=vσ  

%9:%95 <  

2034.0=vσ  

1854.1=MEANTE  

490.1:%95 <TE  

2.0=vσ  

%48:%95 <  

9100.0=vσ  

477.2=MEANTE  

951.5:%95 <TE  
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Unfortunately, contrary to the claim of the epigraph, no proxy of costs of 

incorrect inference for the general decision making case is available for us. 

However, we treat here two basic situations, where productivity analysis is used. 

The first one is to determine the relative competitive position of the object of 

interest (ranking), the second one is to set the achievable output target for the 

DMU of interest (here absolute individual efficiency scores matter). For these 

purposes we use such criteria as Mean Absolute Deviation (MAD) between 

estimated and true technical efficiency scores, Pearson’s correlation coefficient 

between estimated and true technical efficiency scores, Spearman’s rank 

correlation coefficient between estimated and true rankings.  

The experiment is conducted according to the following scenario to 

guarantee the robustness of results and appropriateness of conclusions. First we 

extendedly examine the behavior of DEA and SFA in samples of 25 and 50 units. 

Namely, we fix a pair of inputs with the given multicollinearity for a while and 

vary just significance of noise. Such an experiment should answer the following 

questions: how multicollinearity influences on the results and how this influence 

depends on the significance of the noise component. The appropriateness of 

results is checked then by making both multicollinearity and levels of noise 

variable, i.e. a different input pair and noise term is now chosen on each iteration 

of the experiment. Finally, the dependence of the results on multicollinearity is 

examined along the sample-number split. I.e., results of experiments for three 

basic noise levels are compared for number of sample sizes 25, 50 and 100. The 

set of measurement error experiments is conducted in the similar way. First, the 

measurement error term is fixed in the extended inquires for samples of 25 and 

50 DMU’s. Then we confirm our conclusions by examining the case, when both 

measurement error in inputs and outputs terms vary from iteration to iteration. 

And then we conclude with analyzing how sensitivity to the measurement error in 

endogenous variables is changed with the increase in the sample size. 
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Thus we run 216 experiments with 100 iterations pro experiment for 

experiments, when the sample size is 25 or 50, and 50 iterations pro experiment, 

when the sample size is 100. Hence, the overall number of  “single” experiments 

is 24000. 
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C h a p t e r  6  

 
MAIN RESULTS 

 
 

In our experiments DEA performs better than SFA according to MAD 

criterion. For example, in multicollinearity set of experiments, for σv=0, N=25 it 

ranges from 0.0305 to 0.1543, whereas SFA estimates show MAD form 0.1037 to 

0.3093. In reality this would mean, that whereas you could mistake in determining 

efficiency of the DMU by 15% in the worst case in case of DEA, in case of SFA 

you mistake could be as large as 31%. Moreover, DEA is proven to be more 

robust for the increase in noise. Thus, in multicollinearity set of experiments, for 

σv=0, N=25 MAD in SFA is only two times higher than that of DEA, at high 

levels of noise for σv=0.2 MAD in SFA is about 2.5 times higher than that of 

DEA. In absolute values the discrepancy is even more pronounced. For σv=0.2 

MAD for DEA ranges from ) 0.25 to 1.37, whereas for SFA from 0.54 to 3.17.  

Both methods perform unsatisfactorily at high levels of noise. Our conclusions 

on a quite good robustness of DEA in response to noise and deterioration of 

performance of both DEA and SFA in response to increase in noise is in line 

with prior studies (Banker et al. (1993) etc.). However, in our experiments even at 

high levels of noise DEA outperforms SFA. The reason is that we use a rather 

high λ (relative significance of inefficiency in relation to noise) =4.55. As was 

pointed by Coelli et al. (1998), SFA tends to underestimate λ. At high levels of 

noise this effect becomes more pronounced. The pattern showed by MAD is 

widely confirmed by Pearson’s and Spearman’s correlation criteria. The value of 

correlation coefficients decreases with increase in noise. For example, in 

multicollinearity set of experiments, for σv=0, N=50, ρ=0 for SFA 

Spearman=0.97, Pearson=0.99 at average, for σv=0.2 their average values are 

already 0.89 and 0.87 correspondently.  
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In both sets of experiments DEA and SFA show a substantial 

improvement in results with the increase of sample size. DEA improves its 

performance both in the level of MAD and spread of possible MAD. For 

example, for multicollinearity set of experiments for σv=0 if N=25 MAD ranges 

from 0.0471 to 0.1543 with its mean at 0.0939; for N=100 it is already 0.0313-

0.0620 with its mean at 0.0447. Improvements of performance of SFA with 

increase of sample size are also substantial, but at low level of noise they are less 

pronounced. For example, in multicollinearity set of experiments for σv=0 the 

spread of MAD for SFA shrinks substantially with the increase of the sample 

size, with the widely same average level of MAD (at ρ=0 MAD varies from 

0.1037 to 0.2943 with average at 0.1845 for N=25, at N=100 it varies already 

from 0.1411 to 0.2103 with its average at 0.1862). For high levels of noise 

improvement in the level of MAD becomes more pronounced (for example, at 

σv=0.1548 ρ=0 MAD is from 0.6951 to 0.3148 with its average at 1.5068 for 

N=25 and from 0.7307 to 1.2665 with its average at 0.9495 for N=100). Such 

pattern of results was expected at low levels of noise for DEA due to its 

consistency (Banker (1993)). Consistency of SFA as a maximum likelihood 

method also makes us to expect positive relation of the sample size to the quality 

of estimates. A good, rather unexpected piece of news is that improvement of the 

quality of results for DEA is present and is pronounced even in the presence of 

noise. The conclusions are confirmed by both Spearman and Pearson criteria. For 

example, in multicollinearity set of experiments σv=0.0976 ρ=0.5 for DEA 

Spearman improves from 0.77 at N=25 to 0.83 at N=100, Pearson from 0.84 to 

0.90 correspondently; SFA statistics follow the same pattern: Spearman increase 

its quality, varying from 0.85 to 0.90, Pearson – from 0.88 to 0.91 

correspondently. 

In our experiments, even having worse MAD, SFA consistently 

outperforms DEA by Spearman rank correlation and Pearson correlation 

coefficients. For example, in multicollinearity set of experiments for σv=0.0976 
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ρ=0 N=25 for DEA average values of Spearman and Pearson are 0.73 and 0.77 

correspondently, at the same time those of SFA are 0.86 and 0.88; however, 

MAD criteria shows a clear dominance of DEA for this case (MAD at average is 

0.2133 for DEA and 0.4601 for SFA). The reason is that in DEA VRS 

production function is drawn through a set of observations chosen to be efficient 

according to the certain criteria, thus DEA consistently overestimates the number 

of 100% efficient DMUs. With the increase of the sample size this effect softens 

and asymptotically disappears. 

Let examine the multicollinearity set of experiments more tediously. With 

the increase of multicollinearity MAD of DEA becomes on average smaller. For 

example, for N=25 σv=0 fixed inputs at ρ=0 MAD DEA varies from 0.0351 to 

0.1509 with average at 0.0965, at ρ=0.8 it is somewhat lower and varies from 

0.0323 to 0.1379 with average at 0.0720. In its scope, however, the effect is 

almost negligible. If by ρ=0 we risk to make a mistake in 1.5% while estimating 

the inefficiency, at ρ=0.8 we are “luckier” to reduce it to 1.4% being 0.1% 

exacter. Overall over experiments in different model settings this improvement 

never exceeds 1.5% in absolute value. The same direction of improvement is 

shown by Spearman and Pearson coefficients. For example for N=50 σv=0 fixed 

inputs at ρ=0 Spearman and Pearson are at average 0.83 and 0.88 

correspondently, at ρ=0.8 their average values increase to 0.89 and 0.93 

correspondently. This pattern is remarkably stable for all the experiments on 

multicollinearity. The reason, however, could be very simple. We noted in the 

preliminary analysis part (Chapter 5, Design of Monte Carlo Experiments) that 2 

effects are expected to be in play in DEA: the first one, is decrease of robustness 

of results, the second one is decrease in the number of DMUs estimated to be 

efficient of DEA. The second effect is caught by our experiments. However, it is 

modest in its scope. 

SFA shows no clear pattern of reaction in response to changes in 

multicollinearity in our experiments. 
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Overall, no significant influence of multicorrelation in the range from 0 to 

0.8 in the case of two inputs was found. In view of believes of researches, 

described in the motivation and literature review sections it is an interesting and 

valuable result. 

Let examine the measurement error set of experiments. Once more let 

recall that studies of omitted variable problem, when a variable of a comparable 

scope to the rest of the variables was omitted, for DEA and SFA showed that 

omission of a relevant variable has dramatic consequences. As was noted above 

(Chapter 1. Introduction) the measurement error in the endogenous variables 

could be considered as a special case of the omitted variable problem, where the 

“pseudo” omitted variable is the error term. However, commonly it is much less 

in scope then the endogenous variables. So, the question of interest is whether 

measurement errors of a realistic size (up to 20% of the endogenous variable) 

would cause any substantial problems to the estimated ranking and efficiency 

scores. 

Having examined graphics we state that no clear direction of change of 

performance is observed with the introduction of the measurement error into 

endogenous variables, when the measurement error is moderate (not more than 

20% of input). The expected deterioration in performance is not captured by the 

data even at low levels/no noise within the model. 

It is also interesting to compare cases of no measurement error in 

endogenous variables, but presence of noise and cases of the presence of 

measurement error, but absence of noise. By doing so, we notice that uniformly 

distributed measurement error that lies in bound of -20% to 20% of the size of  

endogenous variables is roughly correspondent to the normally distributed noise 

that does not exceed 9% in 95 cases in 100. For example, for N=25 in case of no 

measurement errors in endogenous variables (Abound=0) and σv=0.0447 average 

MAD of DEA is 0.0891, Spearman and Pearson correlation coefficients are 

0.6899 and 0.7684 correspondently. In case of no noise (σv=0) and Abound=1 
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average MAD for DEA is quite similar and equals to 0.0898, Spearman and 

Pearson coefficients somewhat higher and equal to 0.7857 and 0.8221 

correspondently. The same pattern of correspondence is also observed for SFA. 

Lower correlation coefficients with the true efficiencies in case of noise along the 

same average value of MAD is a bit surprising, especially in case of SFA. Since 

exactly the normally distributed noise in endogenous variables is believed to be 

captured by the model. We see it as a confirmation of severance of 

underestimation of  λ, as was pointed in Coelli (1998).  
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C h a p t e r  7  

 
CONCLUSIONS 

 
The aim of the present study was to examine the relative performance of 

DEA and SFA models in presence of realistic values of multicollinearity and the 

measurement error in endogenous variables. These problems were believed to 

have significant effects on the estimation results (Resti (2000), Pedraja-Chappara 

et al. (1999)). To examine the issue we carefully specified the underlying true data 

generation model to provide the “purity” of the experiment and conduct a 

number of experiments for different parameters of the sample size, significance 

of noise and also by fixing some variables for several iteration (by taking them out 

of loop) to check the robustness of the results. Our findings, however, are rather 

optimistic. We found no significant influence of multicorrelation in the range 

from 0 to 0.8 in the case of two inputs. Moreover, no clear direction of change of 

performance was observed with the introduction of the measurement error into 

endogenous variables, when the measurement error is moderate (not more than 

20% of input). In view of believes of researches, described in the motivation and 

literature review sections, it is an interesting and valuable result. 

We have performed a wide range of experiments to guarantee the 

robustness of our findings. The directions of research could be extended further, 

however. First of all, it would be interesting to examine consequences of 

multicollinearity as a function of number of endogenous variables. In our study 

we fixed the number of inputs to two. Secondly, it would be valuable to 

investigate also “extremely high” levels of multicollinearity and find the “critical” 

mass of multicollinearity for the models, when multicollinearity starts to pose 

serious problems. In case of measurement error set of experiments, it would be 
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of value to examine the robustness of received results for different distributions 

of the measurement error term. 
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APPENDIX A 
TABLEA.1 COUNTRIES’ EFFICIENCY. RESULTS FROM DEA VRS 

AND SFA. 
 

  1965 1990 

  
Efficiency 
(DEA) 

DEA 
(Rank) 

Efficiency 
(SFA) 

SFA 
(Rank) 

Efficiency 
(DEA) 

DEA 
(Rank) 

Efficiency 
(SFA) 

SFA 
(Rank) 

                  
ARGENTINA 100.0% 1 79.2% 17 80.9% 24 80.9% 17
AUSTRALIA 76.4% 26 81.1% 13 82.4% 23 82.7% 13
AUSTRIA 85.3% 18 78.9% 18 73.2% 34 80.7% 18
BELGIUM 70.5% 32 81.4% 12 86.2% 18 83.0% 12
BOLIVIA 50.6% 45 39.5% 46 41.2% 50 43.2% 46
CANADA 79.7% 23 85.4% 6 93.5% 13 86.6% 6
CHILE 84.8% 19 71.1% 24 67.5% 39 73.4% 24
COLOMBIA 41.4% 53 43.6% 45 55.1% 45 47.2% 45
DENMARK 75.6% 27 77.3% 19 70.1% 37 79.2% 19
DOMINICAN REP. 75.1% 28 53.6% 36 51.7% 47 56.9% 36
ECUADOR 37.6% 54 36.6% 52 36.3% 53 40.3% 52
FINLAND 51.0% 44 63.4% 31 74.2% 31 66.2% 31
FRANCE 79.7% 24 83.0% 9 82.5% 22 84.5% 9
GERMANY, WEST 69.0% 33 74.7% 22 80.2% 26 76.8% 22
GREECE 54.8% 42 56.6% 35 59.9% 42 59.8% 35
GUATEMALA 85.7% 16 66.3% 29 76.5% 30 68.9% 29
HONDURAS 45.3% 49 37.0% 50 41.2% 51 40.8% 50
HONG KONG 45.5% 48 66.7% 28 100.0% 1 69.3% 28
ICELAND 100.0% 1 85.1% 7 100.0% 1 86.4% 7
INDIA 100.0% 1 37.2% 49 100.0% 1 40.9% 49
IRELAND 71.1% 30 75.4% 21 85.3% 19 77.5% 21
ISRAEL 60.2% 37 73.0% 23 84.5% 20 75.2% 23
ITALY 67.3% 34 79.8% 14 88.5% 17 81.5% 14
IVORY COAST 100.0% 1 66.1% 30 72.3% 35 68.7% 30
JAMAICA 57.0% 40 47.1% 41 52.1% 46 50.6% 41
JAPAN 76.7% 25 60.1% 32 61.5% 41 63.1% 32
KENYA 36.3% 55 26.8% 55 57.8% 44 30.4% 55
KOREA, REP. 55.4% 41 47.8% 39 67.9% 38 51.3% 39
LUXEMBOURG 100.0% 1 77.0% 20 100.0% 1 78.9% 20
MADAGASCAR 45.6% 47 25.2% 56 24.5% 57 28.8% 56
MALAWI 46.0% 46 36.9% 51 44.7% 49 40.6% 51
MAURITIUS 97.0% 12 79.7% 15 100.0% 1 81.4% 15
MEXICO 89.6% 14 79.5% 16 99.8% 12 81.2% 16
MAROCCO 93.5% 13 69.9% 26 100.0% 1 72.4% 26
NETHERLANDS 84.0% 21 86.8% 5 88.7% 16 88.0% 5
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Proceeding… 

NEW ZEALAND 87.4% 15 82.3% 10 71.7% 36 83.8% 10
NIGERIA 100.0% 1 45.5% 43 100.0% 1 49.0% 43
NORWAY 62.9% 36 58.8% 33 79.4% 27 61.8% 33
PANAMA 44.5% 50 38.0% 48 33.7% 55 41.7% 48
PARAGUAY 100.0% 1 94.2% 1 100.0% 1 94.7% 1
PERU 58.3% 38 46.9% 42 45.2% 48 50.4% 42
PHILIPPINES 51.6% 43 38.7% 47 74.0% 32 42.4% 47
PORTUGAL 71.1% 31 68.1% 27 80.6% 25 70.6% 27
SIERRA LEONE 100.0% 1 93.7% 2 100.0% 1 94.3% 2
SPAIN 97.8% 11 83.9% 8 82.9% 21 85.3% 8
SRI LANKA 32.6% 56 30.1% 54 36.6% 52 33.8% 54
SWEDEN 80.7% 22 81.7% 11 77.1% 29 83.3% 11
SWITZERLAND 85.4% 17 70.1% 25 89.1% 14 72.5% 25
SYRIA 42.2% 52 53.4% 37 65.6% 40 56.7% 37
TAIWAN 57.3% 39 51.7% 38 59.3% 43 55.1% 38
THAILAND 74.5% 29 45.0% 44 89.0% 15 48.5% 44
TURKEY 63.6% 35 47.2% 40 78.8% 28 50.7% 40
U.K. 100.0% 1 88.9% 4 100.0% 1 89.9% 4
U.S.A. 100.0% 1 92.5% 3 100.0% 1 93.2% 3
YUGOSLAVIA 84.4% 20 58.3% 34 73.8% 33 61.4% 34
ZAMBIA 42.9% 51 32.0% 53 34.1% 54 35.8% 53
ZIMBABWE 17.1% 57 18.1% 57 25.3% 56 21.3% 57

 

 

Table A.2 Correspondence of DEA VRS and SFA Estimates   

in the Countries’ Example (Summary Statistics). 

DEA 1965 SFA 1965 DEA 1990 SFA 1990 
Mean Mean Mean Mean 
70.9% 62.2% 73.3% 64.8% 

MAD MAD 
0.13 0.11 

Pearson's 
correlation 

Pearson's 
correlation 

75.5% 76.5% 
Spearman's 
correlation 

Spearman's 
correlation 

67.5% 65.9% 
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APPENDIX B 

Table B.1  

N=25           
Only v and u vary from iteration to iteration; x (exogenous variables) are fixed 
    min mean max min mean max min mean max 
Abound/sigma_v 0 0.02 0.0447 

0               
  DEA              
  MAD 0.0337 0.0963 0.1737 0.0164 0.0417 0.0716 0.0352 0.0852 0.1408 
  std_MAD 0.0285    0.0091   0.0193    
  Spearman 0.3638 0.7629 0.9523 0.2985 0.6519 0.8892 0.4546 0.7315 0.9615 
  Pearson 0.0186 0.8095 0.9875 0.2029 0.7301 0.9682 0.3114 0.7927 0.9653 
  SFA              
  MAD 0.1276 0.1929 0.3254 0.0497 0.0760 0.1022 0.1133 0.1851 0.2602 
  std_MAD 0.0332    0.0119   0.0287    
  Spearman 0.6838 0.9317 0.9985 0.5231 0.8478 0.9569 0.4538 0.8401 0.9623 
  Pearson 0.7859 0.9562 0.9955 0.6521 0.8875 0.9719 0.6930 0.8814 0.9738 

0.3               
  DEA              
  MAD 0.0306 0.0834 0.1417 0.0210 0.0396 0.0658 0.0454 0.0897 0.1603 
  std_MAD 0.0232    0.0087   0.0252    
  Spearman 0.4785 0.7895 0.9531 0.0862 0.6037 0.9308 0.2708 0.6666 0.9592 
  Pearson 0.3004 0.8493 0.9847 0.2435 0.7319 0.9659 0.2077 0.7551 0.9746 
  SFA              
  MAD 0.1244 0.1822 0.2483 0.0430 0.0768 0.1062 0.1274 0.1889 0.3250 
  std_MAD 0.0268    0.0127   0.0324    
  Spearman 0.6785 0.9266 1.0000 0.4385 0.8435 0.9569 0.6538 0.8601 0.9646 
  Pearson 0.7264 0.9521 0.9987 0.7308 0.8883 0.9741 0.7418 0.8911 0.9755 

0.5                     
  DEA              
  MAD 0.0308 0.0887 0.1766 0.0248 0.0404 0.0673 0.0411 0.0976 0.1510 
  std_MAD 0.0253    0.0093   0.0234    
  Spearman 0.5315 0.7842 0.9346 0.4438 0.6582 0.8831 0.1692 0.6450 0.8592 
  Pearson 0.4850 0.8356 0.9924 0.1964 0.7491 0.9697 0.2817 0.6856 0.9432 
  SFA              
  MAD 0.1163 0.1858 0.2864 0.0425 0.0789 0.1073 0.1243 0.1841 0.2480 
  std_MAD 0.0315    0.0125   0.0281    
  Spearman 0.7100 0.9267 0.9992 0.5300 0.8571 0.9492 0.6000 0.8555 0.9738 

  Pearson 0.8318 0.9522 0.9987 0.6196 0.8947 0.9636 0.7241 0.8922 0.9629 
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Proceeding… 
1               

  DEA              
  MAD 0.0449 0.0893 0.1417 0.0191 0.0401 0.0731 0.0573 0.0908 0.1668 
  std_MAD 0.0225    0.0096   0.0203    
  Spearman 0.4662 0.7726 0.9362 0.1108 0.6365 0.9323 0.4462 0.7090 0.9115 
  Pearson 0.3151 0.8276 0.9794 0.3968 0.7488 0.9647 0.2645 0.7430 0.9394 
  SFA              
  MAD 0.1093 0.1807 0.2680 0.0506 0.0775 0.1069 0.1162 0.1863 0.2860 
  std_MAD 0.0302    0.0129   0.0294    
  Spearman 0.7592 0.9259 0.9985 0.5431 0.8517 0.9631 0.5200 0.8510 0.9646 

  Pearson 0.7726 0.9514 0.9982 0.6727 0.8947 0.9678 0.6499 0.8833 0.9721 
 

Proceeding… 

    min mean max min mean max min mean max 
Abound/sigma_v 0.0976 0.1548 0.2 

0              
  DEA             
  MAD 0.0969 0.2081 0.3748 0.1960 0.4166 0.8367 0.3154 0.6318 1.2794 
  std_MAD 0.0595   0.1321    0.1956    
  Spearman 0.2962 0.7171 0.9262 0.2662 0.7323 0.9400 0.4008 0.7190 0.9423 
  Pearson 0.1867 0.7967 0.9870 0.2417 0.7797 0.9796 0.0590 0.7858 0.9817 
  SFA             
  MAD 0.2659 0.4828 0.6979 0.5223 0.9689 1.5757 0.6426 1.4049 2.4644 
  std_MAD 0.0927   0.2356    0.3898    
  Spearman 0.4092 0.8505 0.9646 0.6508 0.8672 0.9808 0.6154 0.8479 0.9623 

  Pearson 0.7168 0.8860 0.9559 0.6552 0.8739 0.9436 0.6722 0.8546 0.9472 

0.3              
  DEA             
  MAD 0.1011 0.2100 0.3558 0.1890 0.4150 0.7527 0.2419 0.6655 1.3510 
  std_MAD 0.0533   0.1331    0.2289    
  Spearman 0.3938 0.7409 0.9392 0.1838 0.7384 0.9515 0.3638 0.7366 0.9208 
  Pearson 0.1678 0.8200 0.9884 0.3478 0.8313 0.9830 0.2721 0.8154 0.9897 
  SFA             
  MAD 0.3120 0.4969 0.7307 0.4850 0.9481 1.6351 0.7728 1.4957 2.6250 
  std_MAD 0.0914   0.2303    0.4095    
  Spearman 0.6092 0.8551 0.9654 0.4869 0.8490 0.9638 0.6485 0.8542 0.9638 

  Pearson 0.6631 0.8858 0.9584 0.6745 0.8649 0.9529 0.6819 0.8485 0.9543 
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Proceeding… 
0.5                     
  DEA             
  MAD 0.1195 0.2147 0.3707 0.1876 0.4097 0.9828 0.2929 0.6039 1.4640 
  std_MAD 0.0578   0.1360    0.1963    
  Spearman 0.1362 0.7218 0.9100 0.3185 0.6923 0.9138 0.3823 0.7704 0.9646 
  Pearson 0.1422 0.7970 0.9616 0.0386 0.7911 0.9759 0.1378 0.8528 0.9951 
  SFA             
  MAD 0.2352 0.4863 0.7387 0.3703 0.9182 1.4583 0.7552 1.4679 3.5347 
  std_MAD 0.0995   0.2178    0.4535    
  Spearman 0.6208 0.8485 0.9623 0.5492 0.8427 0.9462 0.5262 0.8504 0.9554 

  Pearson 0.6183 0.8756 0.9557 0.6581 0.8696 0.9499 0.6470 0.8561 0.9585 

1              
  DEA             
  MAD 0.1052 0.2117 0.3786 0.1974 0.4062 0.7209 0.2365 0.5938 1.2738 
  std_MAD 0.0534   0.1146    0.1745    
  Spearman 0.3377 0.7101 0.9377 0.1862 0.7347 0.9385 0.4977 0.7727 0.9631 
  Pearson 0.1065 0.7797 0.9580 0.3375 0.8176 0.9864 0.2283 0.8497 0.9944 
  SFA             
  MAD 0.2776 0.4800 0.7111 0.4842 0.9449 1.6367 0.8512 1.4582 2.4230 
  std_MAD 0.0872   0.2179    0.3517    
  Spearman 0.6369 0.8529 0.9608 0.6185 0.8479 0.9723 0.6408 0.8579 0.9577 

  Pearson 0.7298 0.8829 0.9569 0.6889 0.8670 0.9539 0.6206 0.8552 0.9584 
 

Table B.2 

N=50            
Only v and u vary from iteration to iteration; x (exogenous variables) are fixed 
    min mean max min mean max min mean max 
Abound/sigma_v 0 0.02 0.0447 

0               
  DEA              
  MAD 0.0366 0.0668 0.1076 0.0185 0.0311 0.0532 0.0415 0.0650 0.0977 
  std_MAD 0.0146    0.0054   0.0105    
  Spearman 0.6971 0.8548 0.9741 0.4836 0.7102 0.8762 0.5929 0.7873 0.9301 
  Pearson 0.5316 0.8992 0.9884 0.4427 0.7900 0.9360 0.6091 0.8473 0.9547 
  SFA              
  MAD 0.1416 0.1889 0.2496 0.0540 0.0770 0.1021 0.1423 0.1835 0.2351 
  std_MAD 0.0206    0.0089   0.0214    
  Spearman 0.8482 0.9694 0.9988 0.7335 0.8863 0.9535 0.7901 0.8929 0.9510 

  Pearson 0.8689 0.9782 0.9976 0.8115 0.9149 0.9650 0.8271 0.9163 0.9666 
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Proceeding… 
0.25                     

  DEA              
  MAD 0.0309 0.0669 0.1100 0.0187 0.0315 0.0430 0.0408 0.0666 0.0991 
  std_MAD 0.0157    0.0053   0.0110    
  Spearman 0.5563 0.8132 0.9520 0.4995 0.7368 0.9014 0.5371 0.7530 0.9045 
  Pearson 0.5502 0.8674 0.9828 0.5350 0.8114 0.9421 0.5906 0.8384 0.9639 
  SFA              
  MAD 0.1323 0.1853 0.2418 0.0521 0.0780 0.1012 0.1370 0.1857 0.2393 
  std_MAD 0.0226    0.0079   0.0213    
  Spearman 0.8348 0.9665 0.9995 0.7475 0.8885 0.9563 0.7157 0.8821 0.9472 

  Pearson 0.8247 0.9763 0.9980 0.8187 0.9177 0.9725 0.7839 0.9114 0.9647 

0.5               
  DEA              
  MAD 0.0456 0.0719 0.1129 0.0203 0.0316 0.0465 0.0454 0.0709 0.1053 
  std_MAD 0.0141    0.0062   0.0118    
  Spearman 0.6109 0.7949 0.9435 0.3593 0.7113 0.9005 0.5073 0.7415 0.9110 
  Pearson 0.5465 0.8435 0.9679 0.3130 0.7863 0.9472 0.4261 0.8122 0.9567 
  SFA              
  MAD 0.1485 0.1845 0.2582 0.0588 0.0761 0.1015 0.1355 0.1847 0.2357 
  std_MAD 0.0181    0.0082   0.0177    
  Spearman 0.8712 0.9684 0.9988 0.7200 0.8799 0.9450 0.7660 0.8868 0.9499 

  Pearson 0.9177 0.9781 0.9984 0.8031 0.9110 0.9616 0.7980 0.9157 0.9573 

1                     
  DEA              
  MAD 0.0286 0.0623 0.0985 0.0185 0.0306 0.0448 0.0414 0.0707 0.1043 
  std_MAD 0.0157    0.0057   0.0131    
  Spearman 0.6094 0.8600 0.9772 0.5230 0.7383 0.8783 0.5557 0.7534 0.9149 
  Pearson 0.5674 0.9016 0.9843 0.5866 0.8044 0.9442 0.5845 0.8279 0.9611 
  SFA              
  MAD 0.1320 0.1843 0.2483 0.0464 0.0760 0.0940 0.1421 0.1869 0.2487 
  std_MAD 0.0228    0.0084   0.0207    
  Spearman 0.8275 0.9638 0.9985 0.7380 0.8868 0.9482 0.7650 0.8855 0.9568 

  Pearson 0.8464 0.9750 0.9979 0.8294 0.9131 0.9589 0.8117 0.9146 0.9545 
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Proceeding… 

    min mean max min mean max min mean max 
Abound/sigma_v 0.0976 0.1548 0.2 

0              
  DEA             
  MAD 0.1177 0.1695 0.2894 0.1905 0.3689 0.6882 0.3168 0.5757 1.2006 
  std_MAD 0.0305   0.0931    0.1478    
  Spearman 0.4394 0.7665 0.9161 0.4983 0.7530 0.9207 0.6359 0.7860 0.9498 
  Pearson 0.4354 0.8452 0.9609 0.3792 0.8355 0.9826 0.3536 0.8763 0.9883 
  SFA             
  MAD 0.3024 0.4673 0.6871 0.5498 0.9403 1.3164 0.3893 1.4657 2.5581 
  std_MAD 0.0634   0.1603    0.3023    
  Spearman 0.7322 0.8877 0.9503 0.7619 0.8838 0.9598 0.6980 0.8819 0.9503 

  Pearson 0.8077 0.9032 0.9544 0.7350 0.8754 0.9338 0.7574 0.8595 0.9726 

0.25                     
  DEA             
  MAD 0.1089 0.1748 0.2457 0.2176 0.3588 0.5668 0.3274 0.5479 0.8661 
  std_MAD 0.0303   0.0739    0.1155    
  Spearman 0.5648 0.7679 0.9201 0.5721 0.7694 0.9517 0.5420 0.8122 0.9550 
  Pearson 0.4860 0.8382 0.9787 0.4735 0.8518 0.9685 0.6316 0.9025 0.9849 
  SFA             
  MAD 0.3370 0.4826 0.6273 0.5961 0.9494 1.3899 1.0180 1.5273 2.1443 
  std_MAD 0.0608   0.1572    0.2542    
  Spearman 0.7857 0.8895 0.9477 0.7119 0.8828 0.9442 0.7900 0.8855 0.9576 

  Pearson 0.8056 0.9065 0.9525 0.7777 0.8803 0.9448 0.7400 0.8555 0.9214 

0.5              
  DEA             
  MAD 0.1125 0.1846 0.3242 0.2015 0.3598 0.6634 0.3155 0.5212 0.9476 
  std_MAD 0.0391   0.0863    0.1262    
  Spearman 0.4014 0.7329 0.8946 0.5155 0.7736 0.9375 0.6903 0.8477 0.9381 
  Pearson 0.4187 0.8246 0.9649 0.3750 0.8449 0.9870 0.5107 0.9138 0.9860 
  SFA             
  MAD 0.3375 0.4819 0.6460 0.2948 0.9531 1.3085 0.9669 1.4895 2.5598 
  std_MAD 0.0624   0.1627    0.2742    
  Spearman 0.7921 0.8881 0.9640 0.7475 0.8874 0.9500 0.6976 0.8869 0.9447 

  Pearson 0.8349 0.9065 0.9560 0.7371 0.8800 0.9382 0.7059 0.8659 0.9340 
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Proceeding… 
1                     

  DEA             
  MAD 0.0874 0.1655 0.2663 0.2156 0.3643 0.6383 0.2976 0.5760 1.0876 
  std_MAD 0.0294   0.0834    0.1561    
  Spearman 0.6206 0.8056 0.9253 0.5887 0.7690 0.9093 0.6173 0.8022 0.9237 
  Pearson 0.6047 0.8665 0.9672 0.3236 0.8547 0.9895 0.2807 0.8707 0.9867 
  SFA             
  MAD 0.3515 0.4923 0.6657 0.6340 0.9609 1.4812 0.9697 1.4622 2.3244 
  std_MAD 0.0718   0.1506    0.2754    
  Spearman 0.7773 0.8936 0.9483 0.7256 0.8876 0.9534 0.7670 0.8827 0.9419 

  Pearson 0.8318 0.9090 0.9454 0.7147 0.8788 0.9467 0.7125 0.8533 0.9225 
 

Table B.3  

N=25       
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
Abound/sigma_v 0 0.02 0.0447 

0               
  DEA              
  MAD 0.0456 0.0919 0.1735 0.0186 0.0414 0.0651 0.0441 0.0891 0.1682 
  std_MAD 0.0270    0.0097   0.0222    
  Spearman 0.4815 0.7703 0.9554 0.2854 0.6465 0.9000 0.4146 0.6899 0.8985 
  Pearson 0.3720 0.8061 0.9850 0.2243 0.7419 0.9434 0.3374 0.7684 0.9784 
  SFA              
  MAD 0.1046 0.1855 0.2593 0.0430 0.0769 0.1043 0.1079 0.1850 0.2555 
  std_MAD 0.0335    0.0125   0.0325    
  Spearman 0.6646 0.9273 0.9992 0.5200 0.8476 0.9638 0.5831 0.8590 0.9738 

  Pearson 0.7711 0.9534 0.9981 0.7370 0.8980 0.9737 0.7744 0.8977 0.9779 

0.25                     
  DEA              
  MAD 0.0416 0.0915 0.1880 0.0218 0.0412 0.0650 0.0509 0.0890 0.1674 
  std_MAD 0.0263    0.0095   0.0211    
  Spearman 0.4315 0.7608 0.9431 0.2623 0.6782 0.9123 0.2992 0.6776 0.9000 
  Pearson 0.3203 0.8160 0.9901 0.3702 0.7423 0.9443 0.3028 0.7438 0.9639 
  SFA              
  MAD 0.1118 0.1862 0.2817 0.0544 0.0789 0.1067 0.0867 0.1818 0.2596 
  std_MAD 0.0324    0.0119   0.0306    
  Spearman 0.7308 0.9316 0.9985 0.5262 0.8563 0.9715 0.5123 0.8416 0.9577 

  Pearson 0.7397 0.9566 0.9979 0.7054 0.8999 0.9777 0.7246 0.8893 0.9738 
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Proceeding… 
0.5               

  DEA              
  MAD 0.0427 0.0928 0.1722 0.0187 0.0412 0.0795 0.0348 0.0891 0.1411 
  std_MAD 0.0279    0.0114   0.0221    
  Spearman 0.3746 0.7782 0.9700 0.2400 0.6549 0.8685 0.1846 0.6909 0.9046 
  Pearson 0.3377 0.8278 0.9873 0.3496 0.7466 0.9630 0.2501 0.7549 0.9629 
  SFA              
  MAD 0.1183 0.1866 0.2991 0.0425 0.0776 0.1073 0.1156 0.1858 0.2659 
  std_MAD 0.0361    0.0132   0.0310    
  Spearman 0.7531 0.9247 0.9969 0.6515 0.8492 0.9685 0.5208 0.8491 0.9615 

  Pearson 0.8294 0.9530 0.9983 0.6696 0.8926 0.9670 0.7501 0.8878 0.9653 

1                     
  DEA              
  MAD 0.0324 0.0898 0.1588 0.0228 0.0409 0.0658 0.0451 0.0873 0.1424 
  std_MAD 0.0263    0.0092   0.0203    
  Spearman 0.5138 0.7857 0.9708 0.3238 0.6656 0.9392 0.3454 0.7085 0.9046 
  Pearson 0.4175 0.8221 0.9868 0.3150 0.7330 0.9632 0.2111 0.7930 0.9574 
  SFA              
  MAD 0.1165 0.1878 0.2770 0.0483 0.0782 0.1094 0.1042 0.1854 0.2547 
  std_MAD 0.0318    0.0131   0.0316    
  Spearman 0.7477 0.9249 0.9985 0.5546 0.8599 0.9615 0.5046 0.8490 0.9631 

  Pearson 0.7981 0.9459 0.9967 0.6347 0.8939 0.9737 0.7206 0.8969 0.9696 
 

 

Proceeding… 

    min mean max min mean max min mean max 
Abound/sigma_v 0.0976 0.1548 0.2 

0              
  DEA             
  MAD 0.0745 0.2187 0.4073 0.2016 0.4264 0.7697 0.2768 0.6302 1.1381 
  std_MAD 0.0563   0.1118    0.2042    
  Spearman 0.3215 0.7034 0.9262 0.3354 0.6961 0.9262 0.1915 0.7459 0.9400 
  Pearson 0.2191 0.7711 0.9748 0.0863 0.7655 0.9850 0.2959 0.8264 0.9858 
  SFA             
  MAD 0.2653 0.4832 0.7765 0.5867 0.9557 1.4468 0.7903 1.5372 2.6993 
  std_MAD 0.0895   0.1982    0.3936    
  Spearman 0.6885 0.8505 0.9531 0.5669 0.8595 0.9600 0.5408 0.8564 0.9708 

  Pearson 0.7129 0.8724 0.9704 0.6993 0.8670 0.9558 0.5949 0.8563 0.9527 
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Proceeding… 
0.25                     
  DEA             
  MAD 0.1125 0.2139 0.4100 0.1973 0.4062 0.7340 0.2642 0.6284 1.3860 
  std_MAD 0.0582   0.1179    0.2101    
  Spearman 0.3985 0.7239 0.9638 0.3462 0.7223 0.9623 0.4792 0.7543 0.9423 
  Pearson 0.2346 0.7834 0.9849 0.1798 0.7766 0.9852 0.1644 0.8417 0.9902 
  SFA             
  MAD 0.2737 0.4792 0.7500 0.5330 0.9484 1.4314 0.5776 1.4911 2.7697 
  std_MAD 0.0998   0.2124    0.4164    
  Spearman 0.5885 0.8439 0.9554 0.6738 0.8622 0.9562 0.6354 0.8469 0.9638 

  Pearson 0.6301 0.8678 0.9577 0.5900 0.8629 0.9500 0.6558 0.8512 0.9604 

0.5              
  DEA             
  MAD 0.0979 0.2078 0.4793 0.1982 0.4146 0.7240 0.2437 0.6416 1.2493 
  std_MAD 0.0654   0.1043    0.1898    
  Spearman 0.2446 0.7075 0.9162 0.4015 0.7246 0.9531 0.1685 0.7208 0.9569 
  Pearson 0.1400 0.7744 0.9743 0.2147 0.8083 0.9951 0.0446 0.8256 0.9829 
  SFA             
  MAD 0.2670 0.4679 0.7391 0.1752 0.9459 1.5186 0.7342 1.4707 2.4531 
  std_MAD 0.0967   0.2174    0.3641    
  Spearman 0.5515 0.8559 0.9746 0.5915 0.8527 0.9685 0.4600 0.8431 0.9754 

  Pearson 0.7015 0.8903 0.9668 0.7477 0.8792 0.9552 0.6064 0.8503 0.9469 

1                     
  DEA             
  MAD 0.1191 0.2035 0.3303 0.2225 0.4073 0.7293 0.2679 0.6811 1.4576 
  std_MAD 0.0517   0.1087    0.2161    
  Spearman 0.4669 0.7408 0.9608 0.3454 0.7233 0.9392 0.2731 0.7237 0.9469 

  Pearson 0.3257 0.8038 0.9894 
-

0.0251 0.7934 0.9794 0.1415 0.8200 0.9858 
  SFA             
  MAD 0.2993 0.4731 0.7329 0.5715 0.9340 1.6740 0.8122 1.5640 3.3550 
  std_MAD 0.0827   0.1994    0.4418    
  Spearman 0.6277 0.8473 0.9654 0.6408 0.8471 0.9662 0.5962 0.8525 0.9615 

  Pearson 0.7330 0.8804 0.9569 0.6734 0.8624 0.9495 0.6758 0.8501 0.9461 
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Table B.4  

N=50       
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
Abound/sigma_v 0 0.02 0.0447 

0               
  DEA              
  MAD 0.0293 0.0624 0.1081 0.0197 0.0315 0.0457 0.0462 0.0720 0.1256 
  std_MAD 0.0136    0.0057   0.0137    
  Spearman 0.6249 0.8390 0.9749 0.3978 0.7047 0.8717 0.4572 0.7385 0.9297 
  Pearson 0.6783 0.8989 0.9859 0.4112 0.7885 0.9471 0.3303 0.8107 0.9657 
  SFA              
  MAD 0.1395 0.1833 0.2582 0.0548 0.0751 0.0943 0.0702 0.1873 0.2383 
  std_MAD 0.0206    0.0082   0.0263    
  Spearman 0.8578 0.9706 0.9997 0.7726 0.8877 0.9532 0.7990 0.8936 0.9649 

  Pearson 0.9103 0.9793 0.9983 0.8529 0.9183 0.9681 0.8507 0.9207 0.9702 

0.25                     
  DEA              
  MAD 0.0330 0.0615 0.1021 0.0196 0.0317 0.0479 0.0419 0.0712 0.1128 
  std_MAD 0.0159    0.0059   0.0135    
  Spearman 0.6131 0.8438 0.9754 0.4817 0.7081 0.8723 0.4848 0.7491 0.9217 
  Pearson 0.5384 0.8822 0.9824 0.4807 0.7861 0.9318 0.4942 0.8170 0.9527 
  SFA              
  MAD 0.1320 0.1850 0.2395 0.0531 0.0775 0.0981 0.1423 0.1851 0.2434 
  std_MAD 0.0193    0.0096   0.0235    
  Spearman 0.7937 0.9656 0.9997 0.7288 0.8819 0.9522 0.7662 0.8791 0.9619 

  Pearson 0.8527 0.9756 0.9978 0.8317 0.9144 0.9671 0.8008 0.9112 0.9635 

0.5               
  DEA              
  MAD 0.0336 0.0690 0.1257 0.0189 0.0309 0.0482 0.0396 0.0690 0.1018 
  std_MAD 0.0180    0.0058   0.0126    
  Spearman 0.6429 0.8277 0.9627 0.3591 0.7250 0.9345 0.5953 0.7505 0.9255 
  Pearson 0.2166 0.8296 0.9930 0.5277 0.8008 0.9550 0.5699 0.8471 0.9485 
  SFA              
  MAD 0.1414 0.1887 0.2386 0.0518 0.0758 0.0980 0.1302 0.1866 0.2406 
  std_MAD 0.0235    0.0086   0.0230    
  Spearman 0.8652 0.9685 0.9986 0.7339 0.8778 0.9540 0.7108 0.8796 0.9691 

  Pearson 0.9229 0.9782 0.9979 0.5181 0.9090 0.9673 0.8026 0.9156 0.9644 
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Proceeding… 
1                     

  DEA              
  MAD 0.0253 0.0700 0.1261 0.0199 0.0320 0.0489 0.0454 0.0697 0.1076 
  std_MAD 0.0216    0.0064   0.0131    
  Spearman 0.6391 0.8381 0.9798 0.4986 0.7260 0.9031 0.5693 0.7542 0.8995 
  Pearson 0.3644 0.8358 0.9898 0.5744 0.7954 0.9618 0.5541 0.8276 0.9521 
  SFA              
  MAD 0.1425 0.1853 0.2437 0.0540 0.0773 0.0938 0.1191 0.1863 0.2426 
  std_MAD 0.0236    0.0088   0.0211    
  Spearman 0.8679 0.9627 0.9997 0.6672 0.8805 0.9401 0.7219 0.8858 0.9511 

  Pearson 0.8867 0.9740 0.9982 0.7285 0.9093 0.9595 0.7994 0.9132 0.9523 
 

Proceeding… 

    min mean max min mean max min mean max 
Abound/sigma_v 0.0976 0.1548 0.2 

0              
  DEA             
  MAD 0.1174 0.1778 0.3366 0.2221 0.3574 0.5867 0.2833 0.5982 1.2269 
  std_MAD 0.0378   0.0762    0.1589    
  Spearman 0.4776 0.7610 0.9122 0.4695 0.7643 0.9484 0.5134 0.7625 0.9368 
  Pearson 0.4873 0.8297 0.9586 0.2747 0.8464 0.9825 0.2577 0.8631 0.9918 
  SFA             
  MAD 0.3573 0.4854 0.7566 0.3631 0.9325 1.3859 0.9018 1.4907 2.3316 
  std_MAD 0.0651   0.1503    0.2803    
  Spearman 0.7620 0.8888 0.9536 0.7694 0.8871 0.9481 0.7647 0.8861 0.9550 

  Pearson 0.8119 0.9039 0.9531 0.7808 0.8785 0.9376 0.7200 0.8567 0.9512 

0.25                     
  DEA             
  MAD 0.1247 0.1765 0.2544 0.1927 0.3508 0.5560 0.3486 0.5720 0.9986 
  std_MAD 0.0323   0.0721    0.1411    
  Spearman 0.5100 0.7693 0.9128 0.5946 0.7698 0.8967 0.5673 0.7626 0.9286 
  Pearson 0.4962 0.8460 0.9623 0.5249 0.8836 0.9743 0.4044 0.8510 0.9826 
  SFA             
  MAD 0.3620 0.4898 0.6797 0.5959 0.9555 1.2923 0.8596 1.4556 2.4473 
  std_MAD 0.0599   0.1542    0.3086    
  Spearman 0.7952 0.8909 0.9544 0.7123 0.8794 0.9695 0.7609 0.8833 0.9510 

  Pearson 0.8379 0.9034 0.9554 0.7929 0.8854 0.9334 0.7691 0.8627 0.9350 
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Proceeding… 
0.5              

  DEA             
  MAD 0.1116 0.1758 0.2861 0.2262 0.3496 0.5159 0.3054 0.5887 1.0706 
  std_MAD 0.0364   0.0683    0.1497    
  Spearman 0.5740 0.7713 0.8945 0.5697 0.7743 0.9314 0.6020 0.7719 0.9549 
  Pearson 0.3629 0.8459 0.9618 0.5341 0.8720 0.9765 0.4109 0.8700 0.9949 
  SFA             
  MAD 0.3518 0.4777 0.6474 0.2522 0.9355 1.2656 0.7948 1.4695 2.2419 
  std_MAD 0.0690   0.1462    0.2907    
  Spearman 0.7842 0.8881 0.9523 0.6918 0.8753 0.9573 0.7277 0.8846 0.9557 

  Pearson 0.8048 0.9050 0.9694 0.7926 0.8790 0.9586 0.7320 0.8544 0.9149 

1                     
  DEA             
  MAD 0.1117 0.1700 0.2618 0.2157 0.3588 0.6076 0.3306 0.5805 1.0145 
  std_MAD 0.0264   0.0742    0.1345    
  Spearman 0.5848 0.7854 0.9307 0.4810 0.7804 0.9254 0.4778 0.7801 0.9382 
  Pearson 0.4257 0.8604 0.9738 0.5801 0.8681 0.9786 0.4423 0.8688 0.9843 
  SFA             
  MAD 0.3316 0.4886 0.6875 0.6726 0.9797 1.5278 0.8911 1.4811 2.4466 
  std_MAD 0.0633   0.1644    0.2929    
  Spearman 0.7263 0.8889 0.9612 0.7623 0.8899 0.9623 0.6672 0.8783 0.9463 

  Pearson 0.8316 0.9082 0.9524 0.8004 0.8854 0.9457 0.6037 0.8557 0.9232 
 

Table B.5 

sigma_v=0     lambda=inf   sigma_u=0.2036   
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
Abound/N 25 50 100 

0               
  DEA              
  MAD 0.0456 0.0919 0.1735 0.0293 0.0624 0.1081 0.0243 0.0466 0.0702 
  std_MAD 0.027    0.0136   0.0109    
  Spearman 0.4815 0.7703 0.9554 0.6249 0.839 0.9749 0.736 0.8933 0.9653 
  Pearson 0.372 0.8061 0.985 0.6783 0.8989 0.9859 0.7186 0.9327 0.9894 
  SFA              
  MAD 0.1046 0.1855 0.2593 0.1395 0.1833 0.2582 0.1543 0.1895 0.2335 
  std_MAD 0.0335    0.0206   0.0204    
  Spearman 0.6646 0.9273 0.9992 0.8578 0.9706 0.9997 0.9087 0.9835 0.9997 

  Pearson 0.7711 0.9534 0.9981 0.9103 0.9793 0.9983 0.9509 0.9863 0.9977 
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Proceeding… 
0.25                     
  DEA              
  MAD 0.0416 0.0915 0.188 0.033 0.0615 0.1021 0.019 0.0452 0.0686 
  std_MAD 0.0263    0.0159   0.0094    
  Spearman 0.4315 0.7608 0.9431 0.6131 0.8438 0.9754 0.7656 0.8925 0.9691 
  Pearson 0.3203 0.816 0.9901 0.5384 0.8822 0.9824 0.7997 0.9323 0.9904 
  SFA              
  MAD 0.1118 0.1862 0.2817 0.132 0.185 0.2395 0.1544 0.187 0.2281 
  std_MAD 0.0324    0.0193   0.0168    
  Spearman 0.7308 0.9316 0.9985 0.7937 0.9656 0.9997 0.9017 0.9817 0.9996 

  Pearson 0.7397 0.9566 0.9979 0.8527 0.9756 0.9978 0.9455 0.9854 0.9966 

0.5               
  DEA              
  MAD 0.0427 0.0928 0.1722 0.0336 0.069 0.1257 0.0284 0.0438 0.0725 
  std_MAD 0.0279    0.018   0.0089    
  Spearman 0.3746 0.7782 0.97 0.6429 0.8277 0.9627 0.7694 0.9041 0.967 
  Pearson 0.3377 0.8278 0.9873 0.2166 0.8296 0.993 0.8433 0.9437 0.987 
  SFA              
  MAD 0.1183 0.1866 0.2991 0.1414 0.1887 0.2386 0.16 0.1874 0.2205 
  std_MAD 0.0361    0.0235   0.0138    
  Spearman 0.7531 0.9247 0.9969 0.8652 0.9685 0.9986 0.9317 0.9839 0.9988 

  Pearson 0.8294 0.953 0.9983 0.9229 0.9782 0.9979 0.948 0.9874 0.9974 

1                     
  DEA              
  MAD 0.0324 0.0898 0.1588 0.0253 0.07 0.1261 0.0222 0.0431 0.0618 
  std_MAD 0.0263    0.0216   0.0102    
  Spearman 0.5138 0.7857 0.9708 0.6391 0.8381 0.9798 0.8071 0.8952 0.9754 
  Pearson 0.4175 0.8221 0.9868 0.3644 0.8358 0.9898 0.7898 0.9308 0.9916 
  SFA              
  MAD 0.1165 0.1878 0.277 0.1425 0.1853 0.2437 0.1411 0.1855 0.2165 
  std_MAD 0.0318    0.0236   0.0149    
  Spearman 0.7477 0.9249 0.9985 0.8679 0.9627 0.9997 0.912 0.9809 0.9988 

  Pearson 0.7981 0.9459 0.9967 0.8867 0.974 0.9982 0.9478 0.9851 0.997 
 

 

 

 

 

 

 

 

 52



 

Table B.6 

sigma_v=0.0976        
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
Abound/N 25 50 100 

0               
  DEA              
  MAD 0.0745 0.2187 0.4073 0.1174 0.1778 0.3366 0.1285 0.1669 0.2425 
  std_MAD 0.0563    0.0378   0.0255    
  Spearman 0.3215 0.7034 0.9262 0.4776 0.7610 0.9122 0.6288 0.8161 0.9115 
  Pearson 0.2191 0.7711 0.9748 0.4873 0.8297 0.9586 0.6339 0.8854 0.9681 
  SFA              
  MAD 0.2653 0.4832 0.7765 0.3573 0.4854 0.7566 0.3935 0.5018 0.6413 
  std_MAD 0.0895    0.0651   0.0622    
  Spearman 0.6885 0.8505 0.9531 0.7620 0.8888 0.9536 0.8329 0.9082 0.9486 

  Pearson 0.7129 0.8724 0.9704 0.8119 0.9039 0.9531 0.8742 0.9126 0.9411 

0.25                     
  DEA              
  MAD 0.1125 0.2139 0.4100 0.1247 0.1765 0.2544 0.1240 0.1681 0.2416 
  std_MAD 0.0582    0.0323   0.0222    
  Spearman 0.3985 0.7239 0.9638 0.5100 0.7693 0.9128 0.6988 0.8038 0.8979 
  Pearson 0.2346 0.7834 0.9849 0.4962 0.8460 0.9623 0.6893 0.8752 0.9604 
  SFA              
  MAD 0.2737 0.4792 0.7500 0.3620 0.4898 0.6797 0.3890 0.4805 0.5580 
  std_MAD 0.0998    0.0599   0.0433    
  Spearman 0.5885 0.8439 0.9554 0.7952 0.8909 0.9544 0.8208 0.9004 0.9432 

  Pearson 0.6301 0.8678 0.9577 0.8379 0.9034 0.9554 0.8603 0.9069 0.9386 

0.5               
  DEA              
  MAD 0.0979 0.2078 0.4793 0.1116 0.1758 0.2861 0.1263 0.1603 0.2152 
  std_MAD 0.0654    0.0364   0.0200    
  Spearman 0.2446 0.7075 0.9162 0.5740 0.7713 0.8945 0.6970 0.8327 0.9134 
  Pearson 0.1400 0.7744 0.9743 0.3629 0.8459 0.9618 0.7599 0.8996 0.9624 
  SFA              
  MAD 0.2670 0.4679 0.7391 0.3518 0.4777 0.6474 0.3510 0.4855 0.5914 
  std_MAD 0.0967    0.0690   0.0459    
  Spearman 0.5515 0.8559 0.9746 0.7842 0.8881 0.9523 0.8597 0.9077 0.9478 

  Pearson 0.7015 0.8903 0.9668 0.8048 0.9050 0.9694 0.8634 0.9163 0.9514 
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Proceeding… 
1                     

  DEA              
  MAD 0.1191 0.2035 0.3303 0.1117 0.1700 0.2618 0.1130 0.1580 0.2167 
  std_MAD 0.0517    0.0264   0.0227    
  Spearman 0.4669 0.7408 0.9608 0.5848 0.7854 0.9307 0.7109 0.8279 0.9256 
  Pearson 0.3257 0.8038 0.9894 0.4257 0.8604 0.9738 0.8378 0.8966 0.9500 
  SFA              
  MAD 0.2993 0.4731 0.7329 0.3316 0.4886 0.6875 0.4007 0.4755 0.5719 
  std_MAD 0.0827    0.0633   0.0393    
  Spearman 0.6277 0.8473 0.9654 0.7263 0.8889 0.9612 0.8164 0.9053 0.9484 

  Pearson 0.7330 0.8804 0.9569 0.8316 0.9082 0.9524 0.8673 0.9114 0.9463 
 

 

Table B.7 

sigma_v=0.1548         
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
Abound/N 25 50 100 

0               
  DEA              
  MAD 0.2016 0.4264 0.7697 0.2221 0.3574 0.5867 0.2523 0.3558 0.5117 
  std_MAD 0.1118    0.0762   0.0698    
  Spearman 0.3354 0.6961 0.9262 0.4695 0.7643 0.9484 0.6397 0.8205 0.9087 
  Pearson 0.0863 0.7655 0.9850 0.2747 0.8464 0.9825 0.3759 0.8842 0.9775 
  SFA              
  MAD 0.5867 0.9557 1.4468 0.3631 0.9325 1.3859 0.7361 0.9417 1.1487 
  std_MAD 0.1982    0.1503   0.1030    
  Spearman 0.5669 0.8595 0.9600 0.7694 0.8871 0.9481 0.8102 0.9040 0.9495 

  Pearson 0.6993 0.8670 0.9558 0.7808 0.8785 0.9376 0.7910 0.8840 0.9295 

0.25                     
  DEA              
  MAD 0.1973 0.4062 0.7340 0.1927 0.3508 0.5560 0.2405 0.3400 0.4814 
  std_MAD 0.1179    0.0721   0.0568    
  Spearman 0.3462 0.7223 0.9623 0.5946 0.7698 0.8967 0.6312 0.8217 0.8965 
  Pearson 0.1798 0.7766 0.9852 0.5249 0.8836 0.9743 0.6637 0.8936 0.9655 
  SFA              
  MAD 0.5330 0.9484 1.4314 0.5959 0.9555 1.2923 0.7356 0.9398 1.1563 
  std_MAD 0.2124    0.1542   0.1066    
  Spearman 0.6738 0.8622 0.9562 0.7123 0.8794 0.9695 0.8276 0.9014 0.9409 

  Pearson 0.5900 0.8629 0.9500 0.7929 0.8854 0.9334 0.8334 0.8807 0.9152 
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Proceeding… 
0.5               

  DEA              
  MAD 0.1982 0.4146 0.7240 0.2262 0.3496 0.5159 0.2437 0.3522 0.5258 
  std_MAD 0.1043    0.0683   0.0655    
  Spearman 0.4015 0.7246 0.9531 0.5697 0.7743 0.9314 0.6932 0.8207 0.8847 
  Pearson 0.2147 0.8083 0.9951 0.5341 0.8720 0.9765 0.7023 0.8957 0.9717 
  SFA              
  MAD 0.1752 0.9459 1.5186 0.2522 0.9355 1.2656 0.7388 0.9463 1.1132 
  std_MAD 0.2174    0.1462   0.1017    
  Spearman 0.5915 0.8527 0.9685 0.6918 0.8753 0.9573 0.8310 0.9044 0.9470 

  Pearson 0.7477 0.8792 0.9552 0.7926 0.8790 0.9586 0.8331 0.8832 0.9301 

1                     
  DEA              
  MAD 0.2225 0.4073 0.7293 0.2157 0.3588 0.6076 0.2494 0.3434 0.5242 
  std_MAD 0.1087    0.0742   0.0622    
  Spearman 0.3454 0.7233 0.9392 0.4810 0.7804 0.9254 0.7162 0.8211 0.9152 

  Pearson 
-

0.0251 0.7934 0.9794 0.5801 0.8681 0.9786 0.6392 0.9022 0.9734 
  SFA              
  MAD 0.5715 0.9340 1.6740 0.6726 0.9797 1.5278 0.6879 0.9560 1.2884 
  std_MAD 0.1994    0.1644   0.1206    
  Spearman 0.6408 0.8471 0.9662 0.7623 0.8899 0.9623 0.8690 0.9051 0.9501 

  Pearson 0.6734 0.8624 0.9495 0.8004 0.8854 0.9457 0.8346 0.8898 0.9393 
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APPENDIX C 

Table C.1 

N=25           
Only v and u vary from iteration to iteration; x (exogenous variables) are fixed 
    min mean max min mean max min mean max 
rho/sigma_v 0 0.02 0.0447 

0               
  DEA              
  MAD 0.0351 0.0965 0.1509 0.0209 0.0437 0.0689 0.0485 0.0936 0.1776 
  std_MAD 0.0245    0.0089   0.0254    
  Spearman 0.4277 0.7622 0.9400 0.2815 0.6516 0.8992 0.2908 0.6947 0.8969 
  Pearson 0.2230 0.8167 0.9883 0.1746 0.7374 0.9406 0.3478 0.7673 0.9651 
  SFA              
  MAD 0.1066 0.1866 0.2558 0.0448 0.0776 0.1062 0.1114 0.1908 0.2888 
  std_MAD 0.0323    0.0118   0.0311    
  Spearman 0.6154 0.9295 0.9962 0.6323 0.8545 0.9685 0.4777 0.8642 0.9600 

  Pearson 0.8234 0.9539 0.9979 0.7501 0.8936 0.9758 0.6923 0.8949 0.9673 

0.3                     
  DEA              
  MAD 0.0341 0.0918 0.1760 0.0240 0.0405 0.0684 0.0409 0.0945 0.1660 
  std_MAD 0.0245    0.0088   0.0223    
  Spearman 0.5485 0.7594 0.9215 0.3392 0.6636 0.8923 0.3769 0.6669 0.9408 
  Pearson 0.4374 0.8342 0.9862 0.2704 0.7414 0.9494 0.1714 0.7415 0.9668 
  SFA              
  MAD 0.1085 0.1832 0.2654 0.0458 0.0757 0.1058 0.1276 0.1884 0.2949 
  std_MAD 0.0329    0.0129   0.0300    
  Spearman 0.6100 0.9337 0.9977 0.6892 0.8614 0.9646 0.5469 0.8532 0.9608 

  Pearson 0.8003 0.9594 0.9988 0.6990 0.8971 0.9739 0.6976 0.8918 0.9701 

0.5               
  DEA              
  MAD 0.0291 0.0829 0.1393 0.0187 0.0355 0.0670 0.0474 0.0797 0.1441 
  std_MAD 0.0239    0.0092   0.0202    
  Spearman 0.4046 0.8024 0.9654 0.3415 0.6912 0.8900 0.3915 0.7289 0.9400 
  Pearson 0.4409 0.8324 0.9938 0.2109 0.7747 0.9502 0.2413 0.7970 0.9667 
  SFA              
  MAD 0.1141 0.1890 0.2702 0.0470 0.0756 0.1330 0.1138 0.1798 0.2522 
  std_MAD 0.0336    0.0123   0.0306    
  Spearman 0.7154 0.9260 0.9969 0.6169 0.8577 0.9723 0.5600 0.8418 0.9715 

  Pearson 0.7816 0.9473 0.9974 0.7336 0.9004 0.9705 0.6858 0.8831 0.9750 
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Proceeding… 
0.8                     
  DEA              
  MAD 0.0323 0.0720 0.1379 0.0178 0.0344 0.0580 0.0311 0.0762 0.1387 
  std_MAD 0.0209    0.0084   0.0222    
  Spearman 0.5315 0.8355 0.9777 0.3669 0.7058 0.8846 0.4908 0.7585 0.9392 
  Pearson 0.5101 0.8808 0.9900 0.3909 0.7779 0.9704 0.3753 0.8290 0.9855 
  SFA              
  MAD 0.1309 0.1848 0.2638 0.0519 0.0761 0.1157 0.1183 0.1862 0.2606 
  std_MAD 0.0292    0.0129   0.0307    
  Spearman 0.7115 0.9230 1.0000 0.6354 0.8546 0.9546 0.4915 0.8432 0.9669 

  Pearson 0.8154 0.9508 0.9988 0.7113 0.8935 0.9758 0.6370 0.8856 0.9645 
 

Proceeding… 

    min mean max min mean max min mean max 
rho/sigma_v 0.0976 0.1548 0.2 

0              
  DEA             
  MAD 0.1129 0.2224 0.3973 0.1749 0.4086 0.7824 0.2847 0.6400 1.2802 
  std_MAD 0.0610   0.1238    0.2157    
  Spearman 0.3531 0.7226 0.9431 0.3585 0.7305 0.9331 0.4246 0.7152 0.9631 
  Pearson 0.2845 0.7724 0.9642 0.3060 0.8285 0.9872 0.1821 0.7771 0.9925 
  SFA             
  MAD 0.2515 0.4889 0.8439 0.3703 0.9471 1.6367 0.4594 1.4120 2.6153 
  std_MAD 0.1037   0.2173    0.4039    
  Spearman 0.3446 0.8414 0.9569 0.6146 0.8528 0.9754 0.6846 0.8527 0.9646 

  Pearson 0.5321 0.8719 0.9733 0.6946 0.8735 0.9592 0.6958 0.8614 0.9487 

0.3                     
  DEA             
  MAD 0.1071 0.2194 0.4057 0.1576 0.4069 0.8409 0.3069 0.6399 1.3828 
  std_MAD 0.0577   0.1193    0.2073    
  Spearman 0.2854 0.7258 0.9046 0.4369 0.7576 0.9408 0.4123 0.7402 0.9538 

  Pearson 0.2496 0.7943 0.9510 0.2745 0.8306 0.9944 
-

0.0250 0.8260 0.9884 
  SFA             
  MAD 0.2765 0.4912 0.8102 0.5349 0.9909 1.8379 0.9186 1.5100 3.2092 
  std_MAD 0.0986   0.2326    0.3779    
  Spearman 0.5962 0.8497 0.9738 0.5838 0.8509 0.9769 0.6000 0.8593 0.9562 

  Pearson 0.6859 0.8794 0.9584 0.7053 0.8609 0.9477 0.6725 0.8551 0.9451 
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Proceeding… 
0.5              
  DEA             
  MAD 0.0794 0.1846 0.3461 0.1923 0.3852 0.7889 0.2598 0.5742 1.0565 
  std_MAD 0.0522   0.1164    0.1800    
  Spearman 0.4100 0.7681 0.9800 0.3515 0.7533 0.9462 0.2538 0.7478 0.9577 
  Pearson 0.4311 0.8450 0.9752 0.2801 0.8185 0.9904 0.1916 0.8542 0.9961 
  SFA             
  MAD 0.3108 0.4716 0.6819 0.6052 0.9582 2.0274 0.6802 1.4015 2.4616 
  std_MAD 0.0817   0.2285    0.3724    
  Spearman 0.5862 0.8613 0.9869 0.5808 0.8592 0.9646 0.6477 0.8409 0.9492 

  Pearson 0.6866 0.8899 0.9656 0.7368 0.8622 0.9584 0.7025 0.8530 0.9399 

0.8                     
  DEA             
  MAD 0.0840 0.1799 0.3296 0.1796 0.3614 0.7806 0.2789 0.5990 1.3708 
  std_MAD 0.0433   0.1133    0.2041    
  Spearman 0.4200 0.7695 0.9438 0.4046 0.7788 0.9377 0.2200 0.7549 0.9508 

  Pearson 0.2313 0.8408 0.9813 0.1193 0.8534 0.9863 
-

0.0147 0.8139 0.9877 
  SFA             
  MAD 0.1837 0.4835 0.7673 0.5463 0.9483 1.7058 0.3072 1.4402 2.7504 
  std_MAD 0.0979   0.2195    0.4569    
  Spearman 0.6038 0.8471 0.9523 0.5615 0.8619 0.9569 0.5100 0.8561 0.9631 

  Pearson 0.7085 0.8807 0.9618 0.6271 0.8709 0.9518 0.7040 0.8553 0.9639 
 

Table C.2 

N=50            
Only v and u vary from iteration to iteration; x (exogenous variables) are fixed 
    min mean max min mean max min mean max 
rho/sigma_v 0 0.02 0.0447 

0               
  DEA              
  MAD 0.0276 0.0665 0.1362 0.0204 0.0310 0.0490 0.0465 0.0712 0.1083 
  std_MAD 0.0184    0.0053   0.0127    
  Spearman 0.5835 0.8271 0.9654 0.4672 0.7166 0.9348 0.5280 0.7504 0.8898 
  Pearson 0.4982 0.8765 0.9890 0.4310 0.7941 0.9469 0.5438 0.8179 0.9399 
  SFA              
  MAD 0.1306 0.1850 0.2408 0.0528 0.0752 0.1015 0.0931 0.1869 0.2379 
  std_MAD 0.0234    0.0085   0.0234    
  Spearman 0.8294 0.9664 0.9980 0.6853 0.8817 0.9577 0.7030 0.8860 0.9523 

  Pearson 0.8664 0.9774 0.9971 0.7787 0.9124 0.9628 0.8416 0.9157 0.9669 
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Proceeding… 
0.3                     

  DEA              
  MAD 0.0249 0.0586 0.0988 0.0148 0.0310 0.0446 0.0433 0.0666 0.1010 
  std_MAD 0.0135    0.0051   0.0101    
  Spearman 0.6525 0.8621 0.9779 0.5097 0.7152 0.9093 0.4286 0.7735 0.9102 
  Pearson 0.6420 0.9101 0.9803 0.5374 0.7987 0.9624 0.5601 0.8360 0.9489 
  SFA              
  MAD 0.1224 0.1840 0.2390 0.0577 0.0770 0.0949 0.1251 0.1848 0.2398 
  std_MAD 0.0235    0.0079   0.0211    
  Spearman 0.7553 0.9633 0.9993 0.7615 0.8888 0.9603 0.7953 0.8904 0.9439 

  Pearson 0.8382 0.9732 0.9978 0.8301 0.9190 0.9644 0.8379 0.9143 0.9599 

0.5               
  DEA              
  MAD 0.0300 0.0566 0.0911 0.0200 0.0289 0.0396 0.0458 0.0655 0.1013 
  std_MAD 0.0135    0.0052   0.0106    
  Spearman 0.6793 0.8582 0.9655 0.5523 0.7444 0.9078 0.6033 0.7699 0.8892 
  Pearson 0.6492 0.8980 0.9896 0.5119 0.8137 0.9528 0.4925 0.8505 0.9422 
  SFA              
  MAD 0.0431 0.1854 0.2298 0.0578 0.0759 0.0963 0.1236 0.1868 0.2467 
  std_MAD 0.0259    0.0089   0.0200    
  Spearman 0.8754 0.9688 0.9993 0.7381 0.8829 0.9444 0.7770 0.8888 0.9473 

  Pearson 0.9057 0.9770 0.9985 0.7897 0.9123 0.9696 0.8420 0.9192 0.9668 

0.8                     
  DEA              
  MAD 0.0269 0.0523 0.0910 0.0180 0.0278 0.0391 0.0361 0.0594 0.0853 
  std_MAD 0.0144    0.0048   0.0105    
  Spearman 0.6903 0.8856 0.9842 0.5681 0.7666 0.9289 0.5764 0.8003 0.9474 
  Pearson 0.6259 0.9279 0.9912 0.6120 0.8364 0.9523 0.5841 0.8660 0.9667 
  SFA              
  MAD 0.1375 0.1876 0.2479 0.0573 0.0769 0.1019 0.1213 0.1839 0.2445 
  std_MAD 0.0190    0.0079   0.0215    
  Spearman 0.8471 0.9643 0.9971 0.7678 0.8803 0.9536 0.7562 0.8902 0.9503 

  Pearson 0.8981 0.9762 0.9976 0.8317 0.9145 0.9644 0.7811 0.9190 0.9729 
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Proceeding… 

    min mean max min mean max min mean max 
rho/sigma_v 0.0976 0.1548 0.2 

0              
  DEA             
  MAD 0.1094 0.1751 0.3171 0.2349 0.3574 0.6049 0.3326 0.6004 1.1125 
  std_MAD 0.0337   0.0696    0.1479    
  Spearman 0.5644 0.7664 0.9333 0.5042 0.7522 0.9191 0.5167 0.7569 0.9091 
  Pearson 0.4820 0.8487 0.9706 0.5362 0.8631 0.9771 0.3982 0.8491 0.9965 
  SFA             
  MAD 0.3516 0.4930 0.6658 0.2863 0.9324 1.2657 0.7257 1.4821 2.5317 
  std_MAD 0.0732   0.1578    0.3018    
  Spearman 0.7292 0.8894 0.9565 0.5962 0.8799 0.9396 0.7608 0.8832 0.9486 

  Pearson 0.8039 0.9052 0.9537 0.7073 0.8859 0.9652 0.7197 0.8572 0.9349 

0.3                     
  DEA             
  MAD 0.1141 0.1622 0.2652 0.2089 0.3418 0.6387 0.3074 0.5619 1.1308 
  std_MAD 0.0317   0.0789    0.1568    
  Spearman 0.5978 0.7965 0.9108 0.4828 0.8150 0.9395 0.5658 0.8015 0.9249 
  Pearson 0.6644 0.8800 0.9738 0.4559 0.8900 0.9865 0.2893 0.8737 0.9832 
  SFA             
  MAD 0.3562 0.4796 0.6828 0.6727 0.9673 1.5275 0.4086 1.4335 2.4725 
  std_MAD 0.0679   0.1618    0.2847    
  Spearman 0.7242 0.8823 0.9582 0.7598 0.8894 0.9600 0.7825 0.8900 0.9648 

  Pearson 0.8192 0.9039 0.9615 0.7532 0.8797 0.9401 0.7884 0.8668 0.9596 

0.5              
  DEA             
  MAD 0.1080 0.1614 0.2872 0.1806 0.3374 0.7192 0.3337 0.5707 1.1533 
  std_MAD 0.0335   0.0767    0.1453    
  Spearman 0.5953 0.7950 0.9547 0.5577 0.8044 0.9260 0.5438 0.7967 0.9324 
  Pearson 0.5783 0.8760 0.9684 0.3805 0.8824 0.9775 0.4515 0.8741 0.9837 
  SFA             
  MAD 0.3229 0.4890 0.6382 0.5355 0.9574 1.5684 0.3734 1.4538 2.3661 
  std_MAD 0.0698   0.1546    0.2675    
  Spearman 0.7099 0.8793 0.9591 0.7545 0.8898 0.9647 0.7842 0.8890 0.9524 

  Pearson 0.8218 0.9035 0.9528 0.7549 0.8854 0.9397 0.7489 0.8627 0.9580 
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Proceeding… 
0.8                     
  DEA             
  MAD 0.0967 0.1555 0.2260 0.1973 0.3375 0.6641 0.2967 0.5813 1.3873 
  std_MAD 0.0267   0.0798    0.1911    
  Spearman 0.5752 0.8139 0.9732 0.5195 0.8205 0.9411 0.6634 0.8168 0.9307 
  Pearson 0.5588 0.8927 0.9811 0.5893 0.8882 0.9904 0.5643 0.8938 0.9933 
  SFA             
  MAD 0.3242 0.4769 0.6161 0.6666 0.9515 1.5361 0.6458 1.4714 2.3120 
  std_MAD 0.0626   0.1688    0.2747    
  Spearman 0.7915 0.8902 0.9549 0.7763 0.8907 0.9525 0.7564 0.8827 0.9483 

  Pearson 0.8007 0.9061 0.9610 0.7770 0.8822 0.9352 0.7488 0.8574 0.9361 
 

Table C.3 

N=25        
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
rho/sigma_v 0 0.02 0.0447 

0                     
  DEA              
  MAD 0.0471 0.0939 0.1543 0.0269 0.0447 0.0695 0.0498 0.0923 0.1773 
  std_MAD 0.0244    0.0098   0.0243    
  Spearman 0.3023 0.7723 0.9577 0.2154 0.6330 0.8892 0.2946 0.7067 0.9277 

  Pearson 0.4461 0.8216 0.9853 
-

0.0789 0.7152 0.9565 0.1986 0.7659 0.9553 
  SFA              
  MAD 0.1037 0.1845 0.2943 0.0448 0.0779 0.1101 0.1086 0.1860 0.2772 
  std_MAD 0.0300    0.0141   0.0302    
  Spearman 0.7854 0.9329 0.9969 0.5492 0.8444 0.9623 0.6877 0.8624 0.9738 

  Pearson 0.8184 0.9525 0.9982 0.6966 0.8843 0.9673 0.7651 0.8948 0.9648 

0.3               
  DEA              
  MAD 0.0369 0.0904 0.1511 0.0206 0.0420 0.0682 0.0493 0.0902 0.1750 
  std_MAD 0.0239    0.0088   0.0224    
  Spearman 0.4938 0.7659 0.9669 0.2892 0.6126 0.9223 0.4131 0.6774 0.8823 
  Pearson 0.3696 0.8142 0.9920 0.2010 0.7174 0.9649 0.4223 0.7697 0.9611 
  SFA              
  MAD 0.1046 0.1829 0.2785 0.0502 0.0766 0.1021 0.1142 0.1842 0.2563 
  std_MAD 0.0322    0.0103   0.0289    
  Spearman 0.7308 0.9334 0.9985 0.5885 0.8655 0.9600 0.6015 0.8543 0.9685 

  Pearson 0.7947 0.9554 0.9981 0.6374 0.8974 0.9706 0.7229 0.8935 0.9720 
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Proceeding… 
0.5                     
  DEA              
  MAD 0.0305 0.0821 0.1597 0.0201 0.0382 0.0620 0.0369 0.0763 0.1384 
  std_MAD 0.0259    0.0087   0.0216    
  Spearman 0.5077 0.8186 0.9692 0.2523 0.6639 0.9192 0.4354 0.7589 0.9592 
  Pearson 0.3887 0.8644 0.9893 0.3477 0.7527 0.9643 0.3650 0.8236 0.9815 
  SFA              
  MAD 0.1230 0.1907 0.3073 0.0477 0.0766 0.1150 0.1233 0.1828 0.2541 
  std_MAD 0.0364    0.0118   0.0280    
  Spearman 0.6777 0.9340 0.9985 0.6354 0.8527 0.9754 0.5077 0.8567 0.9623 

  Pearson 0.8211 0.9574 0.9989 0.7285 0.8931 0.9725 0.7610 0.8915 0.9666 

0.8               
  DEA              
  MAD 0.0325 0.0748 0.1155 0.0156 0.0363 0.0598 0.0385 0.0784 0.1518 
  std_MAD 0.0196    0.0087   0.0211    
  Spearman 0.5454 0.8255 0.9715 0.3546 0.6975 0.9515 0.3900 0.7401 0.9377 
  Pearson 0.3864 0.8738 0.9948 0.2622 0.7679 0.9711 0.2405 0.8058 0.9827 
  SFA              
  MAD 0.1194 0.1818 0.3093 0.0414 0.0769 0.1110 0.1262 0.1912 0.2681 
  std_MAD 0.0301    0.0113   0.0293    
  Spearman 0.5731 0.9236 0.9985 0.5838 0.8489 0.9700 0.6185 0.8613 0.9654 

  Pearson 0.7800 0.9511 0.9986 0.7028 0.8916 0.9800 0.7466 0.8967 0.9721 
 

Proceeding… 

    min mean max min mean max min mean max 
rho/sigma_v 0.0976 0.1548 0.2 

0                     
  DEA             
  MAD 0.1130 0.2133 0.5839 0.2189 0.4386 0.8375 0.2659 0.6510 1.5371 
  std_MAD 0.0609   0.1361    0.2442    
  Spearman 0.3408 0.7290 0.9077 0.3738 0.7125 0.9485 0.1592 0.7285 0.9115 
  Pearson 0.2265 0.7716 0.9662 0.3755 0.8060 0.9827 0.1186 0.8160 0.9889 
  SFA             
  MAD 0.2709 0.4601 0.9088 0.4593 0.9672 1.9346 0.6951 1.5068 3.1648 
  std_MAD 0.0988   0.2444    0.4169    
  Spearman 0.4854 0.8562 0.9615 0.6638 0.8511 0.9508 0.7085 0.8626 0.9700 

  Pearson 0.7062 0.8779 0.9659 0.7125 0.8677 0.9615 0.6764 0.8586 0.9490 
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Proceeding… 
0.3              
  DEA             
  MAD 0.1144 0.2214 0.3955 0.1828 0.4020 0.9498 0.2704 0.5995 1.1294 
  std_MAD 0.0614   0.1294    0.1757    
  Spearman 0.3231 0.7261 0.9331 0.4269 0.7304 0.9623 0.4838 0.7636 0.9354 
  Pearson 0.3361 0.8058 0.9919 0.0672 0.8244 0.9870 0.2229 0.8497 0.9938 
  SFA             
  MAD 0.1595 0.4974 0.7900 0.4902 0.9519 1.6064 0.7455 1.4402 2.5025 
  std_MAD 0.1083   0.2505    0.3513    
  Spearman 0.6369 0.8517 0.9646 0.5338 0.8453 0.9415 0.5546 0.8414 0.9600 

  Pearson 0.6755 0.8880 0.9621 0.7390 0.8676 0.9527 0.6892 0.8535 0.9529 

0.5                     
  DEA             
  MAD 0.0910 0.1913 0.3786 0.1840 0.3775 0.7889 0.2501 0.5938 1.1958 
  std_MAD 0.0547   0.1199    0.1895    
  Spearman 0.3031 0.7694 0.9454 0.4700 0.7596 0.9469 0.5262 0.7570 0.9623 
  Pearson 0.2796 0.8407 0.9828 0.3301 0.8246 0.9845 0.0666 0.8488 0.9832 
  SFA             
  MAD 0.3028 0.4912 0.6901 0.4603 0.9518 1.7404 0.5417 1.5021 2.8039 
  std_MAD 0.0857   0.2495    0.4052    
  Spearman 0.5146 0.8490 0.9638 0.6246 0.8542 0.9538 0.6754 0.8602 0.9485 

  Pearson 0.6012 0.8840 0.9576 0.7035 0.8662 0.9542 0.6777 0.8619 0.9943 

0.8              
  DEA             
  MAD 0.0987 0.1916 0.3767 0.1735 0.3659 0.6279 0.2610 0.5753 1.3691 
  std_MAD 0.0596   0.1020    0.1951    
  Spearman 0.4715 0.7608 0.9523 0.3946 0.7758 0.9385 0.5008 0.7928 0.9377 
  Pearson 0.3604 0.8440 0.9841 0.3666 0.8518 0.9813 0.1764 0.8681 0.9903 
  SFA             
  MAD 0.1368 0.4964 0.7490 0.5860 0.9870 1.7892 0.7281 1.5243 2.9160 
  std_MAD 0.0990   0.2068    0.4335    
  Spearman 0.6223 0.8571 0.9692 0.6062 0.8422 0.9662 0.5385 0.8554 0.9500 

  Pearson 0.7658 0.8945 0.9702 0.5232 0.8620 0.9415 0.6990 0.8596 0.9601 
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Table C.4 

N=50       
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
rho/sigma_v 0 0.02 0.0447 

0               
  DEA              
  MAD 0.0311 0.0657 0.1014 0.0209 0.0306 0.0452 0.0447 0.0683 0.1123 
  std_MAD 0.0153    0.0053   0.0124    
  Spearman 0.6453 0.8281 0.9716 0.4224 0.7228 0.9120 0.4463 0.7542 0.9215 
  Pearson 0.6130 0.8741 0.9860 0.6059 0.8147 0.9370 0.4123 0.8273 0.9521 
  SFA              
  MAD 0.1323 0.1848 0.2373 0.0567 0.0757 0.0984 0.1275 0.1856 0.2759 
  std_MAD 0.0203    0.0082   0.0218    
  Spearman 0.8389 0.9676 0.9994 0.7027 0.8850 0.9560 0.7520 0.8915 0.9521 

  Pearson 0.9148 0.9787 0.9980 0.8395 0.9199 0.9656 0.8361 0.9186 0.9693 

0.3                     
  DEA              
  MAD 0.0286 0.0568 0.0948 0.0200 0.0299 0.0420 0.0428 0.0663 0.1057 
  std_MAD 0.0130    0.0046   0.0114    
  Spearman 0.6812 0.8685 0.9748 0.5334 0.7362 0.9049 0.5577 0.7775 0.9098 
  Pearson 0.6888 0.9178 0.9908 0.5546 0.8145 0.9586 0.6039 0.8454 0.9516 
  SFA              
  MAD 0.1400 0.1861 0.2422 0.0548 0.0771 0.1018 0.1355 0.1868 0.2364 
  std_MAD 0.0226    0.0092   0.0193    
  Spearman 0.7581 0.9651 0.9983 0.7365 0.8877 0.9525 0.7470 0.8901 0.9505 

  Pearson 0.9135 0.9776 0.9981 0.8344 0.9171 0.9662 0.7698 0.9179 0.9614 

0.5               
  DEA              
  MAD 0.0277 0.0550 0.1063 0.0166 0.0286 0.0400 0.0437 0.0628 0.0927 
  std_MAD 0.0151    0.0044   0.0093    
  Spearman 0.6771 0.8745 0.9871 0.5125 0.7508 0.9047 0.4937 0.7789 0.9118 
  Pearson 0.4947 0.9152 0.9928 0.5594 0.8294 0.9501 0.4354 0.8473 0.9525 
  SFA              
  MAD 0.1422 0.1864 0.2575 0.0547 0.0768 0.1061 0.1407 0.1824 0.2357 
  std_MAD 0.0244    0.0080   0.0195    
  Spearman 0.8767 0.9679 0.9998 0.6434 0.8854 0.9554 0.7639 0.8904 0.9528 

  Pearson 0.9033 0.9766 0.9983 0.8213 0.9192 0.9747 0.7951 0.9129 0.9585 
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Proceeding… 
0.8                     
  DEA              
  MAD 0.0212 0.0517 0.1075 0.0186 0.0279 0.0473 0.0375 0.0611 0.0861 
  std_MAD 0.0164    0.0052   0.0109    
  Spearman 0.6990 0.8886 0.9822 0.6076 0.7654 0.9022 0.5564 0.7948 0.9408 
  Pearson 0.6996 0.9310 0.9961 0.6324 0.8354 0.9478 0.4202 0.8517 0.9540 
  SFA              
  MAD 0.1246 0.1850 0.2492 0.0599 0.0768 0.0981 0.0456 0.1818 0.2341 
  std_MAD 0.0215    0.0093   0.0250    
  Spearman 0.8843 0.9706 0.9998 0.6879 0.8794 0.9384 0.7132 0.8856 0.9595 

  Pearson 0.9288 0.9788 0.9980 0.8279 0.9158 0.9561 0.8288 0.9102 0.9578 
 

Proceeding… 

    min mean max min mean max min mean max 
rho/sigma_v 0.0976 0.1548 0.2 

0              
  DEA             
  MAD 0.1051 0.1791 0.2855 0.2361 0.3356 0.5847 0.3108 0.5548 0.9350 
  std_MAD 0.0354   0.0588    0.1222    
  Spearman 0.4461 0.7487 0.9368 0.5621 0.7799 0.9381 0.5756 0.7666 0.9563 
  Pearson 0.3514 0.8382 0.9725 0.5663 0.8681 0.9832 0.3744 0.8575 0.9908 
  SFA             
  MAD 0.3306 0.4823 0.6456 0.6935 0.9411 1.3588 0.7719 1.4535 2.2070 
  std_MAD 0.0616   0.1484    0.2603    
  Spearman 0.7572 0.8816 0.9487 0.7743 0.8890 0.9545 0.7083 0.8861 0.9507 

  Pearson 0.8029 0.9023 0.9564 0.7971 0.8839 0.9477 0.7501 0.8617 0.9333 

0.3                     
  DEA             
  MAD 0.1052 0.1667 0.2524 0.2007 0.3282 0.5530 0.3429 0.5690 1.0673 
  std_MAD 0.0311   0.0661    0.1442    
  Spearman 0.5865 0.8046 0.9358 0.6281 0.8081 0.9314 0.4819 0.7983 0.9380 
  Pearson 0.4838 0.8655 0.9703 0.5644 0.8882 0.9729 0.6390 0.8889 0.9892 
  SFA             
  MAD 0.2022 0.4851 0.6496 0.6136 0.9450 1.4903 0.7233 1.4884 2.1573 
  std_MAD 0.0708   0.1566    0.2851    
  Spearman 0.7495 0.8912 0.9631 0.7310 0.8870 0.9527 0.7976 0.8837 0.9496 

  Pearson 0.8190 0.9023 0.9527 0.7617 0.8902 0.9513 0.7384 0.8537 0.9304 
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Proceeding… 
0.5              
  DEA             
  MAD 0.0899 0.1622 0.2385 0.1933 0.3402 0.7756 0.3277 0.5737 1.5593 
  std_MAD 0.0324   0.0833    0.1725    
  Spearman 0.4921 0.7923 0.9449 0.6130 0.7948 0.9455 0.6005 0.8003 0.9422 
  Pearson 0.4619 0.8586 0.9819 0.4033 0.8662 0.9837 0.5681 0.8940 0.9807 
  SFA             
  MAD 0.3322 0.4683 0.5982 0.5953 0.9446 1.4726 0.9393 1.4855 2.3756 
  std_MAD 0.0613   0.1715    0.2724    
  Spearman 0.7526 0.8864 0.9544 0.7626 0.8829 0.9586 0.7818 0.8832 0.9566 

  Pearson 0.7859 0.9045 0.9623 0.7815 0.8774 0.9390 0.7390 0.8583 0.9478 

0.8                     
  DEA             
  MAD 0.0993 0.1591 0.2779 0.1833 0.3205 0.5382 0.3045 0.5731 1.1577 
  std_MAD 0.0349   0.0694    0.1551    
  Spearman 0.5674 0.8276 0.9255 0.6356 0.8283 0.9349 0.6255 0.8025 0.9346 
  Pearson 0.6429 0.8872 0.9731 0.6008 0.9069 0.9894 0.4481 0.8835 0.9886 
  SFA             
  MAD 0.3158 0.4817 0.7040 0.2646 0.9379 1.3659 0.7895 1.4991 2.2838 
  std_MAD 0.0720   0.1798    0.3019    
  Spearman 0.7815 0.8926 0.9551 0.6667 0.8867 0.9511 0.7433 0.8898 0.9678 

  Pearson 0.8382 0.9048 0.9614 0.7383 0.8847 0.9354 0.7181 0.8554 0.9253 
 

Table C.5 

sigma_v=0     lambda=inf   sigma_u=0.2036   
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
rho/N 25 50 100 

0               
  DEA              
  MAD 0.0471 0.0939 0.1543 0.0311 0.0657 0.1014 0.0313 0.0447 0.0620 
  std_MAD 0.0244    0.0153   0.0082    
  Spearman 0.3023 0.7723 0.9577 0.6453 0.8281 0.9716 0.7833 0.8866 0.9510 
  Pearson 0.4461 0.8216 0.9853 0.6130 0.8741 0.9860 0.8339 0.9282 0.9801 
  SFA              
  MAD 0.1037 0.1845 0.2943 0.1323 0.1848 0.2373 0.1411 0.1862 0.2103 
  std_MAD 0.0300    0.0203   0.0137    
  Spearman 0.7854 0.9329 0.9969 0.8389 0.9676 0.9994 0.9117 0.9806 0.9993 

  Pearson 0.8184 0.9525 0.9982 0.9148 0.9787 0.9980 0.9531 0.9850 0.9976 
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Proceeding… 
0.3                     
  DEA              
  MAD 0.0369 0.0904 0.1511 0.0286 0.0568 0.0948 0.0223 0.0384 0.0562 
  std_MAD 0.0239    0.0130   0.0078    
  Spearman 0.4938 0.7659 0.9669 0.6812 0.8685 0.9748 0.8479 0.9183 0.9704 
  Pearson 0.3696 0.8142 0.9920 0.6888 0.9178 0.9908 0.8291 0.9493 0.9862 
  SFA              
  MAD 0.1046 0.1829 0.2785 0.1400 0.1861 0.2422 0.1572 0.1872 0.2165 
  std_MAD 0.0322    0.0226   0.0145    
  Spearman 0.7308 0.9334 0.9985 0.7581 0.9651 0.9983 0.9221 0.9798 0.9988 

  Pearson 0.7947 0.9554 0.9981 0.9135 0.9776 0.9981 0.9566 0.9844 0.9968 

0.5               
  DEA              
  MAD 0.0305 0.0821 0.1597 0.0277 0.0550 0.1063 0.0210 0.0382 0.0664 
  std_MAD 0.0259    0.0151   0.0087    
  Spearman 0.5077 0.8186 0.9692 0.6771 0.8745 0.9871 0.8329 0.9194 0.9913 
  Pearson 0.3887 0.8644 0.9893 0.4947 0.9152 0.9928 0.8008 0.9500 0.9961 
  SFA              
  MAD 0.1230 0.1907 0.3073 0.1422 0.1864 0.2575 0.1522 0.1863 0.2225 
  std_MAD 0.0364    0.0244   0.0185    
  Spearman 0.6777 0.9340 0.9985 0.8767 0.9679 0.9998 0.8942 0.9807 0.9999 

  Pearson 0.8211 0.9574 0.9989 0.9033 0.9766 0.9983 0.9177 0.9845 0.9980 

0.8                     
  DEA              
  MAD 0.0325 0.0748 0.1155 0.0212 0.0517 0.1075 0.0195 0.0356 0.0524 
  std_MAD 0.0196    0.0164   0.0084    
  Spearman 0.5454 0.8255 0.9715 0.6990 0.8886 0.9822 0.8496 0.9291 0.9816 
  Pearson 0.3864 0.8738 0.9948 0.6996 0.9310 0.9961 0.8665 0.9536 0.9931 
  SFA              
  MAD 0.1194 0.1818 0.3093 0.1246 0.1850 0.2492 0.1415 0.1876 0.2185 
  std_MAD 0.0301    0.0215   0.0147    
  Spearman 0.5731 0.9236 0.9985 0.8843 0.9706 0.9998 0.9298 0.9792 0.9985 

  Pearson 0.7800 0.9511 0.9986 0.9288 0.9788 0.9980 0.9487 0.9833 0.9969 
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Table C.6 

sigma_v=0.0976       
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
rho/N 25 50 100 

0               
  DEA              
  MAD 0.1130 0.2133 0.5839 0.1051 0.1791 0.2855 0.1329 0.1655 0.2081 
  std_MAD 0.0609    0.0354   0.0211    
  Spearman 0.3408 0.7290 0.9077 0.4461 0.7487 0.9368 0.7134 0.8133 0.9019 
  Pearson 0.2265 0.7716 0.9662 0.3514 0.8382 0.9725 0.7336 0.8819 0.9514 
  SFA              
  MAD 0.2709 0.4601 0.9088 0.3306 0.4823 0.6456 0.3510 0.4795 0.5884 
  std_MAD 0.0988    0.0616   0.0410    
  Spearman 0.4854 0.8562 0.9615 0.7572 0.8816 0.9487 0.8704 0.9106 0.9499 

  Pearson 0.7062 0.8779 0.9659 0.8029 0.9023 0.9564 0.8826 0.9171 0.9400 

0.3                     
  DEA              
  MAD 0.1144 0.2214 0.3955 0.1052 0.1667 0.2524 0.1084 0.1601 0.2264 
  std_MAD 0.0614    0.0311   0.0265    
  Spearman 0.3231 0.7261 0.9331 0.5865 0.8046 0.9358 0.7196 0.8324 0.9154 
  Pearson 0.3361 0.8058 0.9919 0.4838 0.8655 0.9703 0.7603 0.8844 0.9615 
  SFA              
  MAD 0.1595 0.4974 0.7900 0.2022 0.4851 0.6496 0.4007 0.4797 0.6056 
  std_MAD 0.1083    0.0708   0.0436    
  Spearman 0.6369 0.8517 0.9646 0.7495 0.8912 0.9631 0.8381 0.9060 0.9421 

  Pearson 0.6755 0.8880 0.9621 0.8190 0.9023 0.9527 0.8603 0.9140 0.9529 

0.5               
  DEA              
  MAD 0.0910 0.1913 0.3786 0.0899 0.1622 0.2385 0.1132 0.1636 0.2240 
  std_MAD 0.0547    0.0324   0.0268    
  Spearman 0.3031 0.7694 0.9454 0.4921 0.7923 0.9449 0.6945 0.8321 0.9074 
  Pearson 0.2796 0.8407 0.9828 0.4619 0.8586 0.9819 0.7849 0.9038 0.9706 
  SFA              
  MAD 0.3028 0.4912 0.6901 0.3322 0.4683 0.5982 0.3935 0.4978 0.6413 
  std_MAD 0.0857    0.0613   0.0629    
  Spearman 0.5146 0.8490 0.9638 0.7526 0.8864 0.9544 0.8174 0.9041 0.9410 

  Pearson 0.6012 0.8840 0.9576 0.7859 0.9045 0.9623 0.8808 0.9134 0.9415 
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Proceeding… 
0.8                     
  DEA              
  MAD 0.0987 0.1916 0.3767 0.0993 0.1591 0.2779 0.1186 0.1609 0.2272 
  std_MAD 0.0596    0.0349   0.0239    
  Spearman 0.4715 0.7608 0.9523 0.5674 0.8276 0.9255 0.7335 0.8444 0.9233 
  Pearson 0.3604 0.8440 0.9841 0.6429 0.8872 0.9731 0.7464 0.8979 0.9570 
  SFA              
  MAD 0.1368 0.4964 0.7490 0.3158 0.4817 0.7040 0.3890 0.4810 0.5586 
  std_MAD 0.0990    0.0720   0.0416    
  Spearman 0.6223 0.8571 0.9692 0.7815 0.8926 0.9551 0.8430 0.8976 0.9378 

  Pearson 0.7658 0.8945 0.9702 0.8382 0.9048 0.9614 0.8476 0.9074 0.9432 
 

Table C.7 

sigma_v=0.1548    
All variables vary from iteration to iteration 
    min mean max min mean max min mean max 
rho/N 25 50 100 

0                     
  DEA              
  MAD 0.2659 0.6510 1.5371 0.2361 0.3356 0.5847 0.2220 0.3646 0.6413 
  std_MAD 0.2442    0.0588   0.0682    
  Spearman 0.1592 0.7285 0.9115 0.5621 0.7799 0.9381 0.6326 0.8139 0.9332 
  Pearson 0.1186 0.8160 0.9889 0.5663 0.8681 0.9832 0.5804 0.8842 0.9743 
  SFA              
  MAD 0.6951 1.5068 3.1648 0.6935 0.9411 1.3588 0.7307 0.9495 1.2665 
  std_MAD 0.4169    0.1484   0.1186    
  Spearman 0.7085 0.8626 0.9700 0.7743 0.8890 0.9545 0.8412 0.9051 0.9456 

  Pearson 0.6764 0.8586 0.9490 0.7971 0.8839 0.9477 0.8116 0.8911 0.9326 

0.3               
  DEA              
  MAD 0.2704 0.5995 1.1294 0.2007 0.3282 0.5530 0.2147 0.3517 0.7380 
  std_MAD 0.1757    0.0661   0.0880    
  Spearman 0.4838 0.7636 0.9354 0.6281 0.8081 0.9314 0.7092 0.8474 0.9129 
  Pearson 0.2229 0.8497 0.9938 0.5644 0.8882 0.9729 0.8364 0.9170 0.9595 
  SFA              
  MAD 0.7455 1.4402 2.5025 0.6136 0.9450 1.4903 0.7700 0.9435 1.2394 
  std_MAD 0.3513    0.1566   0.1012    
  Spearman 0.5546 0.8414 0.9600 0.7310 0.8870 0.9527 0.8571 0.9051 0.9466 

  Pearson 0.6892 0.8535 0.9529 0.7617 0.8902 0.9513 0.7951 0.8835 0.9321 
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Proceeding… 
0.5                     
  DEA              
  MAD 0.2501 0.5938 1.1958 0.1933 0.3402 0.7756 0.2248 0.3615 0.5879 
  std_MAD 0.1895    0.0833   0.0818    
  Spearman 0.5262 0.7570 0.9623 0.6130 0.7948 0.9455 0.6698 0.8364 0.9227 
  Pearson 0.0666 0.8488 0.9832 0.4033 0.8662 0.9837 0.5130 0.9003 0.9683 
  SFA              
  MAD 0.5417 1.5021 2.8039 0.5953 0.9446 1.4726 0.7534 0.9792 1.3617 
  std_MAD 0.4052    0.1715   0.1526    
  Spearman 0.6754 0.8602 0.9485 0.7626 0.8829 0.9586 0.8611 0.9052 0.9456 

  Pearson 0.6777 0.8619 0.9943 0.7815 0.8774 0.9390 0.8227 0.8820 0.9177 

0.8               
  DEA              
  MAD 0.2610 0.5753 1.3691 0.1833 0.3205 0.5382 0.2488 0.3667 0.5180 
  std_MAD 0.1951    0.0694   0.0645    
  Spearman 0.5008 0.7928 0.9377 0.6356 0.8283 0.9349 0.6790 0.8470 0.9239 
  Pearson 0.1764 0.8681 0.9903 0.6008 0.9069 0.9894 0.6946 0.9061 0.9836 
  SFA              
  MAD 0.7281 1.5243 2.9160 0.2646 0.9379 1.3659 0.7468 0.9520 1.1262 
  std_MAD 0.4335    0.1798   0.0981    
  Spearman 0.5385 0.8554 0.9500 0.6667 0.8867 0.9511 0.8155 0.9033 0.9351 

  Pearson 0.6990 0.8596 0.9601 0.7383 0.8847 0.9354 0.7922 0.8831 0.9240 
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( )v
v Nvyey σ,0~,

i If noise is introduced in the 
following way (as by 
Yu(1998), Banker et al. 
(1993), in my work etc.): ~ =
 , the 95% confidence 
level for noise is calculated 
in the following way: ( ) %100196.1 ⋅−= ⋅ veα σ

. We receive that noise is 
not larger than α% of the 
output level in 95% of 
cases. 

ii Confidence intervals for 
technical efficiency scores 
are computed by the same 
formula as in 1) : ( ) %100196.1 ⋅−= ⋅ uveα σ
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