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University 

We apply a cost -saving approach to studying a number of mutual defense 

games. This approach is founded on computing cost savings from interior 

borders of the members of an alliance. We show that location vis-à-vis 

potential allies and border attributes matters for alliance formation and burden 

sharing if an alliance were to form. A “NATO-Ukraine-Slovakia” mutual 

defense game is studied both in the short- and in the long run. 

  The course of action countries should follow to achieve a mutually 

acceptable utility distribution is under study. We prove the existence of a 

stationary strategy equilibrium in an n -person bargaining game when players’ 
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utility functions are concave.  
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GLOSSARY 

Discount factor: a factor used to compare the value of a dollar received 
in the future to a dollar received today. 
Extensive-form representation of a game: one that specifies: (1) the 
players in the game, (2a) when each player has the move, (2b) what each 
player can do at each of his or her opportunities to move, (2c) what each 
player knows at each of his or her opportunities to move, and (3) the 
payoff received by each player for each combination of moves that could 
be chosen by the players.  
Games with complete information: games in which the players’ payoff 
functions are common knowledge 
Games with perfect information:  at each move in the game the player with 
the move knows the full history of the play of the game thus far. 
Pure strategy Nash equilibrium:  a profile of pure strategies from which 
no player can obtain a higher expected payoff by deviating. 
Nash equilibrium:  in a Nash equilibrium, each player’s equilibrium action 
is at least as good as very other his action, given the other players’ 
actions. 
Noncooperative game theory: it focuses on how cooperation may 
emerge as rational behavior in the absence of an ability to make binding 
agreements. 
Stationary equilibria: equilibria in which the players’ moves are 
independent of the time period and history of the game. 
Strategic game (normal-form): a game that consists of a set of players; 
for each player, a set of actions; for each player, a preference relation 
over the set of action profiles. 
Strategy: is a complete contingent plan, or decision rule, that specifies 
how the player  will act in every possible distinguishable circumstance in 
which he might be called upon to move. 
Subgame perfect equilibrium: a game equilibrium in which every player 
plays an equilibrium on every subgame. 
Subgame: a subgame in an extensive-form game (a) begins at a decision 
node n that is a singleton information set (but is not the game’s first 
decision node), (b) includes all the decision and terminal nodes 
following n in the game tree (but no nodes that do not follow n ) and (c) 
does not cut any information sets 
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Symmetric game: each player has the same set of strategies and every 
pair of players have the same utility function in the sense that, given the 
strategies of all t he other players, interchanging the strategies of players 
interchanges their payoffs. 
n -person coalitional game with transferable utility: ( , )N v , { }N n= 1, ,K  
is the set of players; v R:Σ →  is the characteristic function acting from 
the set of all coalitions Σ . 
Strictly convex bargaining game in characteristic form ( , )N v : if for all 
S T N, ,⊂  with S T\  and T S\  nonempty, 
v S T v S v T v S T( ) ( ) ( ) ( )∪ > + − ∩ . 
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C h a p t e r  1  

INTRODUCTION 

Bargaining is of interest to economists not merely because many transactions 

are negotiated but also because conceptually two -person bargaining is 

somewhat the opposite of perfect competition among infinitely many traders. 

Although it is not difficult to understand that the outcomes of successful 

bargaining should lie in a contract curve, the main problem is to predict to 

which particular outcomes  bargaining will lead.  

 Background 

At present, there are two major approaches to studying bargaining problems: 

Nash’s axiomatic approach (1953) and Rubinstein’s strategic approach 

(1982). Nash’s axiomatic solution to a bargaining game has advantages that are 

hard to exaggerate: the solution defined by the axioms is unique and its simple 

form is easily tractable.  

 In the strategic approach, the outcome is an equilibrium of an explicit 

model of bargaining process. The Rubinstein infinite horizon, alternating 

offers bargaining model has been considered as the fundamental extensive 
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form for non-cooperative bargaining games. The most prominent feature of 

the model is that it provides a unique subgame-perfect equilibrium solution, 

which moreover is efficient.  

 The model has been extended to accommodate three or more players. The 

case when each player in an n -person bargaining game had a veto (the most 

direct generalization of Rubinstein’s two -person bargaining model) was 

studied by Herrero (1985). If some of the players lack a veto then coalitions 

with fewer than all players may reach an agreement, which complicates the 

game a lot. The notion of the core comes to the rescue here. In the core, no 

coalition can create a better deal for itself than that resulting from overall 

coo peration. The core turned out to be indispensable in studying defense 

economics, especially the formation and burden sharing (Gardner, 1995). 

Gardner’s ideas were applied to studying the current NATO expansion 

processes by Sandler (1999).  

 Having determined the core of a cooperative mutual defense game, we face 

another problem: that of describing the process of bargaining that results in an 

outcome belonging to the core. It can be showed that for a number of 

coalitional bargaining games any payoff vector in the core of the underlying 

game is the outcome of some stationary subgame-perfect strategy equilibrium 

of the bargaining game without discounting (Chatterjee et al., 1993; Evans, 
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1997). On the other hand, Chatterjee et al. (1993) showed that for some 

strictly convex bargaining games as the discount factor tends to 1, the 

corresponding sequence of efficient stationary equilibria converges to a point 

in the core. So the problem of the existence of a stationary strategy 

equilibrium is akin to the problem of the nonemptiness of the core in this 

game. For a broad class of n -person infinite horizon bargaining games. 

Herrero (1985) and Chatterjee et al (1993) showed that there is no hope of 

obtaining the core without an assumption of stationarity. Evans (1997) gave an 

example of a natural noncooperative discrete-time noncooperative coalitional 

bargaining game that yields the core as its pure stationary subgame perfect 

equilibrium payoff set. In the case of continuous time, a model possessing this 

property was proposed by Perry and Reny (1994). As a result of these studies, 

interest in the problem of existence of a stationary strategy equilibrium has 

increased recently (Banks and Duggan, 1998; Ray and Vohra, 1999). Note that 

among the first papers devoted to the existence problem in economics were 

those by Debreu (1952) and Glicksberg (1952). These papers’ results have 

been used by a large number of economists until now. Other considerable 

contributions to studying the problem of existence of an equilibrium in 

economic problems were the papers by Ichiishi (1981) and Dasgupta-Maskin 

(1986). 
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 Ray and Vohra (1999) proved that a stationary subgame perfect 

equilibrium exists in a coalitional bargaining game in characteristic form if 

the only source of mixing is in the probabilistic choice of a coalition by each 

proposer. Their reasoning was based on the fact that stationary equilibria 

turned out to be analytically tractable in characteristic form bargaining games 

(they are solutions to a system of equations).  

 On the other hand, the very problem was also studied for a bargaining 

model of social choice by Banks and Duggan (1998). Having assumed that 

players’ utility functions are strictly concave, these authors showed that in a 

majority bargaining game with a random recognition rule there exists a mixed 

strategy stationary equilibrium. Another important contribution to studying 

coalitional bargaining with random proposers was Okada’s 1996 paper, in 

which he studied the properties of the set of stationary subgame perfect pure 

strategy equilibria in a bargaining game in characteristic form. A bargaining 

model congenial to those studied in the two latter papers is under investigation 

in Chapter 3 of this thesis. 

 

Outline of the Thesis. 

Chapter 2 contains a discussion of a number of mutual defense models that 
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have arisen in the course of analyzing a number of possible trends of NATO 

expansion from Ukraine’s point of view. To facilitate the reader’s 

understanding, Gardner’s benchmark mutual defense game is described. After 

that, mutual defense games are studied for different mutual locations of 

would-be members of an alliance. The proposed models allowed us to study a 

“NATO-Slovakia-Ukraine” game. Both in the short run and in the long run the 

center of gravity of the core is explored, that is the most appealing solution to 

the mutual defense game. It is shown that cost savings resulting from NATO 

expansion are more equally distributed in the long run than in the short run. In 

other words, the objections to NATO expansion regarding unequal burden 

sharing that can arise in the short run, will fade away in the long run. 

 In Chapter 3, the problem of existence of a stationary equilibrium is 

studied in an n -person bargaining game where players’ utility function are 

concave (a player’s attitude to risk is neutral or averse). An original way to 

determine a stationary strategy equilibrium is developed. In order to make 

invoking Glicksberg’s results possible, the upper and lower semicontinuities 

of a number of set -valued maps are investigated. 

 Chapter 4 contains the main conclusions of this work. 
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C h a p t e r  2  

MUTUAL DEFENSE GAMES 

 

For more than 40 years Europe was divided in two adversary groups of countries. 

Two military blocks were set up: NATO in 1949 and WTO (the Warsaw Treaty 

Organization) in 1955. At that time, countries making a decision whethe r to enter 

an alliance took into account mainly political not cost-sharing considerations. So, 

the forces that the communist countries allied with the Soviet Union contributed to 

the WTO were military weak and possibly unreliable in combat. In the case of a 

conventional European interblock war, the Soviet military would have scored as 

well without its allies. As time showed, among the major functions of the WTO was 

that of creating a deterrent against East European nationalist thinking and the 

institutional frameworks for Soviet military intervention in East European countries 

when deemed necessary. On the other hand, NATO was formed in 1949 as a 

counter to Soviet aggression in Eastern Europe and its takeover of satellite states.   

With the end of the cold war and the collapse of the Soviet Union, new rationales for NATO’s existence have been brought into life. Among these is one considering the problem of forming an alliance (coalition) of countries within the framework of cooperative game theory. The simpl

(the benchmark case, Sandler (1999)) was proposed by Gardner (1995). In this 

model, spatial and locational characteristics of the countries are regarded as decisive 

in identifying the gains from mutual defense. A few preliminary definitions and 
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concepts of cooperative game theory are required to formalize the game of mutual 

defense. 

 Preliminaries: the Benchmark Game 

 Here is a numerical example with three countries. 

Example 1 (Gardner, 1995, p. 401) . Three contiguous countries are contemplating a mutual defense pact. Each country is represented as a unit square, arrayed in a line with the others (Figure 1) and surrounded by external threats against which each wishes to defend. The cost of defending a cou

the area being defended. The assumption is appropriate since a country of the size 

of Ukraine needs more forces for security than, for example, Moldova, no matter 

where the forces are stationed. 

 

 

 

 

Figure 1. The Benchmark Mutual Defense Game.  

3 2 1 
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Each side of the countries depicted is assumed to cost 1 to defend, so that { }c i( ) , 

the cost of defending nation i  is equal to 4. Similarly, c T( )  represents the cost of 

protecting an alliance of countries T . We assume that the motivation for forming an 

alliance is cost savings as borders become interior and no longer need protecting. As 

a result, { }c( , )12 6= , { }c( , )13 8= , { }c( , )2 3 6= , { }c( , , )12 3 8= . 

If the three countries form a coalition than the global cost saving is as follows: 

{ } { } { } { }c c c c( ) ( ) ( ) ( , , )1 2 3 1 2 3 4+ + − = . 

Let the countries share it equally among themselves, than their costs are the 

following ones: 

x1 4 133 2 77= − =. . , x2 2 77= . , x3 2 77= . . Since { }x x c1 2 1 2+ < ( , ) , 

{ }x x c2 3 2 3+ < ( , ) , { }x x c1 3 1 3+ < ( , ) , there is no incentive for any pair of the 

countries to form a coalition not including the third country (in this case, their costs 

are higher). 

The above reasoning can be readily formalized with the help of the core idea, which has sometimes been named under the stand

total cost met by a coalition should never exceed the cost incurred by this coalition 

if it were to defend itself: 

           for all T N x c Ti
i T

⊂ ≤
∈
∑: ( ).  (2.1) 

Definition 1. (Moulin, 1991, p. 91) . Given is a cost-sharing game ( , )N c , where 
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{ }N n= 1 2, , ,K  is the set of players, and c  associates to each coalition T  of N  its 

cost c S( ) ≥ 0 . The core of ( , )N c  is the set of cost allocations x  satisfying 

x c Ni
i

n

=
=
∑ ( )

1

 and property (2.1). 

Let us compute the core cost allocations in the example. Property (2.1) is the following system of inequalities:

 x x x1 2 3 8+ + = ,  x1 4≤ , x2 4≤ , x3 4≤ , 

 x x1 2 6+ ≤ , x x1 3 8+ ≤ , x x2 3 6+ ≤ . 

In order to facilitate visualizing the solution to the system, let us define player i ’s 

cost savings as y c i xi i= −( ) . Then 

 y y y1 2 3 4+ + = , yi ≥ 0 , i = 12 3, , , 

 y y1 2 2+ ≥ , y y2 3 2+ ≥ , y y1 3 0+ ≥ . 

The simplex  { }y y y y ii1 2 3 4 0 1 2 3+ + = ≥ =, , , ,   is drawn in Figure 2. 
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Figure 2. The Core: the Benchmark Mutual Defense Game.  

The shaded rhombus with vertices ( , , )0 2 2 , ( , , )2 0 2 , ( , , )0 4 0 , ( , , )2 2 0  represents the 

core of the game. The most appealing solution to the cooperative game theoretic 

problem is the center of gravity of the rhombus, which gives country 2 a bigger share 

of cost savings. The game representation is a simplified one, but we further add 

realism to it.   

 

 Several Generalizations of the Benchmark Mutual Defense Game  

A number of generalizations of the model were proposed by Sandler (1999). He showed that within the framework it is possible to study the issue of which additional Partnership for Peace countries are likely to join NATO after the three Visegrad countries (the Czech Republic, Hungary, and Poland). We are going to concent

effort on studying the opportunity of allying Ukraine with some or other of her 

neighbors.  

All the following cases are caused by real life considerations. For example, studying a would-be coalition of Ukraine with Poland and Russia leads to the 

 

 Example 2. The Case of Internal Boundaries of Different Length.  

(0,0,4) y y2 3 2+ =

y y1 2 2+ =  

(0,2,2) (2,0,2) 

(2,2,0) (0,4,0) (4,0,0) 

(1,2,1) 
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 Figure 3. The Case of Internal Boundaries of Different Length. 

The cost of protecting both country 1  and country 2  is equal to 4, that of protecting country 3, {c(

 x x x1 2 3 10+ + =  x1 4≤ , x2 4≤ , x3 8≤ , 

 x x1 2 6+ ≤ , x x1 3 12+ ≤ , x x2 3 8+ ≤ . 

Changing variables ( y c i xi i= −( ) ), 

 y y y1 2 3 6+ + = , yi ≥ 0 , i = 1 2 3, , , 

 y y1 2 2+ ≥ ,  y y2 3 4+ ≥ , y y1 3 0+ ≥ . 

The solution to this system is given in Figure 4. 

 

 

 

 

 

 

(0,0,6) y y2 3 4+ =  

y y1 2 2+ =  (0,2,4) (2,0,4) 

(2,4,0) (0,6,0) (6,0,0) 

3 

2 1 
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 Figure 4. The Core: the Case of Internal Boundaries of Different Length. 

As in the benchmark case, the most appealing solution to the cooperative game is 

the center of gravity ( , , )1 3 2  of the rhombus with vertices ( 0,5,0), (1,4,0), (1,1,2), 

(0,2,2). That is, the interior country receives the biggest share of cost savings in the 

case as well.  

Example 3. An essential difference of this case from the previous one is that country 3 has also a common boundary with country 1. For example, among Ukraine’s border countries are Romania (169 km (southwest

is equal to 443 km. Another example of this type is a coalition including Ukraine, 

Romania and Moldova. 
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Here we study the two following possible country locations:  

  (A) 

 

 

 

 

 

Figure 5. Two Cases of Pairwise Common Boundaries  

(A) { } { }c c( ) ( )1 2 4= = , { }c( 3 ) =6. In this case, { }c( , )1 2 6= , { }c( , )1 3 8= , 

{ }c( , )2 3 8= , { }c( , , )12 3 8= . Property (2.1) gives us: 

 x x x1 2 3 8+ + =  x1 4≤ , x2 4≤ , x3 6≤ , 

 x x1 2 6+ ≤ , x x1 3 8+ ≤ , x x2 3 8+ ≤ . 

Changing variables ( y c i xi i= −( ) ), 

 y y y1 2 3 6+ + = , yi ≥ 0 , i = 1 2 3, , , 

 y y1 2 2+ ≥ ,  

 y y2 3 2+ ≥ , y y1 3 2+ ≥ .The solution to this system is given in Figure 6. 

3 

2 1 

3 

2 1 



 

 33

 

 

 

 

 

 

 

 

Figure 6. The Core: Case (A)  

The center of gravity of the core (2,2,2) is the most appealing solution to the 

cooperative game, which corresponds to the fact that each of the countries has 

common boundaries of a length of 2 with the two other countries.   

(B) { } { }c c( ) ( )1 2 4= = , { }c( 3 ) =10. In this case, { }c( , )1 2 6= , { }c( , )1 3 12= , 

{ }c( , )2 3 10= , { }c( , , )12 3 10= . Property (2.1) gives us:  

 x x x1 2 3 10+ + =  x1 4≤ , x2 4≤ , x3 10≤ , 

 x x1 2 6+ ≤ , x x1 3 12+ ≤ , x x2 3 10+ ≤ . 

Changing variables ( y c i xi i= −( ) ), 

 y y y1 2 3 8+ + = , yi ≥ 0 , i = 1 2 3, , , 

 y y1 2 2+ ≥ ,  

(0,0,6) y y2 3 2+ =  

y y1 2 2+ =  (0,2,4) 

(0,4,2) (4,0,2) 

(4,2,0) 

(2,0,4) 

(2,2,2) 

(2,4,0) (0,6,0) (6,0,0) 

y y1 3 2+ ≥  
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 y y2 3 4+ ≥ , y y1 3 2+ ≥ . 

The solution to this system is given in Figure 7.  

 

 

 

 

 

 

 

 

Figure 7. The Core: Case (B).  

The most appealing solution to the cooperative game is the center of gravity of the 

core (2,3,3), which also corresponds to the length of contiguous boundaries between 

the countries (see Figure 7 (B)).  

The next cooperative game in part reflects the mutual location of NATO countries, Slovakia and Ukraine and a more complicated version of it is studied in the Section “An Application to NATO Expansion.”

 Example 3. The NATO-Slovakia-Ukraine Game: a Simplified Version. 

The countries is located as depicted in Figure 8. 

(0,0,8) 
y y2 3 4+ =  

y y1 2 2+ =  
(0,2,6) 

(0,6,2) 

(4,0,4) 

(4,4,0) 

(2,0,6) 

(2,3,3) 

(2,6,0) (0,8,0) (8,0,0) 

y y1 3 2+ =  
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Figure 8. The NATO-Slovakia-Ukraine Game: a Simplified Version. 

In this case, { } { }c c( ) , ( )1 10 2 4= = , { }c( )3 8= . In this case, { }c( , )1 2 8= , 

{ }c( , )13 16= , { }c( , )2 3 10= , { }c( , , )12 3 12= . Property (2.1) gives us: 

 x x x1 2 3 12+ + =  x1 12≤ , x2 4≤ , x3 8≤ , 

 x x1 2 10+ ≤ , x x1 3 16+ ≤ , x x2 3 10+ ≤ . 

Changing variables ( y c i xi i= −( ) ), 

 y y y1 2 3 12+ + = , yi ≥ 0 , i = 1 2 3, , , 

 y y1 2 6+ ≥ ,  

 y y2 3 2+ ≥ , y y1 3 4+ ≥ . 

The core of this cooperative game is given in Figure 9. The center of gravity of the 

core is the point ( , , )5 4 3 . That is, entering a coalition with its neighbors is in the 

interest of each of the countries and the amount of cost savings for the current 

NATO members are larger than those for Ukraine and Slovakia.  

1. 

2. 
Slovakia 

3. Ukraine 
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Figure 9. The Core: a Simplified Version of the NATO-Slovakia-Ukraine Game. 

 An Application to NATO Expansion 

The above analysis of cooperative mutual defense games is of help in understanding the current process of NATO expansion as well as which countries might become members following the acceptance of Poland, Hungary and the Czech Republic. 

There is no doubt that the most prospective member of the alliance is Slovakia. It has common borders with Austria (91 km), the Chech Republic (215

protection. Unfortunately, Romania has lower chances to join NATO, not only due 

to economic and political causes. Unlike Slovakia, cost savings that would result 

from Romania being a NATO member would be much lower. Of 2,508 km of its 

boundaries, Romania has only 443 km of common boundaries with Hungary. From 

the same angle we can look at the problem of Ukraine’s membership in NATO. Of 

4,558 km of its land boundaries, Ukraine has common boundaries with two country 

members of NATO: Poland (428 km), Hungary (103 km), that is, if Ukraine became 

a member of NATO, there would not be marked cost savings because of a sizable 

(0,8,4) 

(4,8,0) 

(6,0,6) (0,6,6) 

(0,12,0
) 

(12,0,0
) 

(10,2,0
) 

(0,0,12
) y y2 3 2+ =

y y1 3 4+ =  

y y1 2 6+ =  

(5,4,3) (10,0,2



 

 37

increase in external boundaries’ length.  

Before considering a more complicated version of the three-person game with NATO, Slovakia, Ukraine as the players,

billion and $35 billion over 10 years; a US Congressional Budget Office (CBO) 

study, $21 billion to $125 billion, a 1997 NATO study put the figure at $13 billion 

over 10 years (Behner, 1999). . The ranges suggested by the studies and differences 

among them to a large extent reflect different ways of allocating costs among 

members. Generally, expansion cost is subdivided into three parts: new members’ 

costs, current members’ costs, and the common NATO infrastructure costs. The 

1997 Pentagon estimate saw new members providing $14 billion, current European 

members providing 12 billion, and the common infrastructure account requiring $9 

billion (with only $2 billion of which given by the USA). On the other hand, the 

NATO study to a great extent excluded costs to current members and set common 

costs at only 1.5 billion, but kept the cost to new members higher. By adopting this 

estimate the Pentagon avoided a burden-sharing argument. Note that the new 

members are not up to accepting high costs concerning upgrading their military to 

NATO standards (for example, Poland appropriated only a five-year $2.3 billion for 

this purpose).  

In order to take into account the costs of expansion (for example, those related to upgrading the military and infrastructure), we will assume that the cost of protecting a unit o

negative values since according to a number of experts in the long run a country’s 

membership in NATO results in cost savings. That is, the value which z  takes on , 
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among other factors, also depends on the length of the period of time over which 

the model is considered. We also assume that the cost of protecting a unit of a 

NATO country’s boundary is currently equal to 1. Note that today’s military 

spending in Ukraine is without a doubt inadequate and can not ensure the country’s 

security. Its low current level reflects the poor state of the Ukrainian economy, not 

Ukraine’s real defense needs. 

In Figure 10, a more complicated version of the NATO-Slovakia-Ukraine game is 

depicted:  
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Figure 10. The NATO-Slovakia-Ukraine Game 

The costs of protecting the individual players are as follows: { }c( )1 16= , 

{ }c( )2 6= , { }c( )3 12= . As for the costs of protecting the possible coalitions, 

{ }c z( , ) .1 2 14 5= + , { }c z( , )1 3 23 6= + , { }c( , )2 3 10= , { }c z( , , ) .1 2 3 18 5 5= + . 

 Property (2.1) gives us: 

 x x x z1 2 3 185 5+ + = +.  x1 16≤ , x2 6≤ , x3 12≤ , 

 x x z1 2 14 5+ ≤ +. , x x z1 3 23 6+ ≤ + , x x2 3 10+ ≤ . 

Changing variables ( y c i xi i= −( ) ), 

 y y y z1 2 3 155 5+ + = −. , yi ≥ 0 , i = 12 3, , , 

 y y z1 2 7 5+ ≥ −. ,  

 y y2 3 8+ ≥ , y y z1 3 5 6+ ≥ −  

Note that if z  took on extremely high values  (that is, if the cost of entering NATO 

2. 
Slovakia 

1. NATO 

3. Ukraine 

Poland Hungary 

Belarus 
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were prohibitive), the core of the game would be empty (there would be no 

opportunity to create a mutually beneficial coalition). It follows from the following 

computations: 2 205 71 2 3 1 2 2 3 1 3( ) ( ) ( ) ( ) .y y y y y y y y y z+ + = + + + + + ≥ − . So if 

2(15.5-5z)<20.5-7z, the above system has no solution. That is, if z > 3 5. , at least 

one of the players can benefit from not entering the three-person coalition.  

 Let us graphically determine the core of the game in the short run ( )z > 0 . 

 

 

 

 

 

 

 

Figure 11. The Core: the NATO-Slovakia-Ukraine Game in the Short Run.  

Computing the center of gravity for the core of the game is a tedious problem. At the same time, Figure 11 helps us understand  that the expansion favors player 2 (Slovakia) to a higher extent than the other two players. Note that we could expect the result taking in

with NATO country members and Ukraine. On the other hand, Ukraine has 

external boundaries of considerable length with countries not being NATO 

members and, as a result, Ukraine’s burden resulting from entering NATO in the 

short run will be higher.  

At the same time, we have considered NATO countries as a coalition (in essence, one country), although interests of different NATO countries may not coincide. For example, let us consider a three
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Obviously, Poland as the interior country gains a large share of cost savings and 

therefore is more interested in signing a pact than Germany. Similar reasoning allows 

us to explain why NATO’s new eastern members are so much in favor of eastward 

expansion. They would in this case become interior countries and thus gain essential 

cost savings. Therefore, we can come to conclusion that if the issue of accepting 

Ukraine in NATO was on the agenda, the most ardent supporters would be Poland 

and Hungary.  

 In the long run ( . )z = −05 , the core of the game is depicted below. 

 

 

 

 

 

 

Figure 12. The Core: the NATO-Slovakia-Ukraine Game in the Long Run. 

The most appealing solution to the cooperative game is the center of gravity of the 

core (6,6,6). That is, unlike the short -run case, in the long run the three players 

benefit equally from the expansion of NATO. This reasoning gives an incentive for 

NATO to expand eastward and for Ukraine to join NATO, short-run costs 

notwithstanding. 
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In most mutual defense games the core is not empty, that is, it is possible for the countries to conclude a mutually beneficial pact. At the same time, t

games (Perry and Reny, 1994; Evans, 1997) the core coincides with the pure 

stationary subgame perfect equilibrium payoff set, so studying the problem of 

existence of a stationary equilibrium in a noncooperative bargaining game is to a 

considerable extent akin to studying the problem of nonemptiness of its core. On 

the other hand, in the course of proving the existence of a stationary subgame 

perfect equilibrium the process of bargaining (the way of coming to the final utility 

distribution) is often described in an explicit way. The problem of existence of a 

stationary equilibrium in a bargaining game is studied in the following chapter. 
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C h a p t e r  3  

A NONCOOPERATIVE n -PERSON BARGAINING GAME WITH RANDOM 
PROPOSERS 

   

The core in a cooperative game represents the feasible set of cooperative opportunities: if the players of the game all agree on it, they can enforce any ut

considered within the framework of bargaining theory. Important contributions to 

the well-known programme of “achieving” cooperative game-theoretic concepts via 

the play of a strategic game was made by Chatterjee et al. (1993), Okada (1996), 

Evans (1997). These authors showed that for a number of coalitional bargaining 

games any payoff vector in the core of the underlying game is the outcome of some 

stationary subgame -perfect strategy equilibrium of the bargaining game (without 

discounting). On the other hand, Chatterjee et al. showed that for some strictly 

convex bargaining games as the discount factor tends to 1, the corresponding 

sequence of efficient stationary equilibria converges to a point in the core. So the 

problem of the existence of a stationary strategy equilibrium is akin to the problem 

of the nonemptiness of the core in this game.  

Further we consider the problem of existence of a stationary strategy equilibrium in an n -person bargaining game with random proposers where players have concave utility functions.

 The Bargaining Game: Formulation 
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Let us consider an bargaining game { }( , , , ( ) )N D X ui ⋅ , where { }N n= 1, ,K , n ≥ 2 ; the set of decisive coalitions 

exists x X∈ such that u xi ( ) > 0 , i n= 1, ,K . Without loss of generality, the interior 

of X  is non-empty (otherwise, we can consider the set as a subset of its affine 

span). 

 The process of bargaining can be described in a recursive way as follows: 

At round { }t s s= ∈, , , 1 2 K  

1. One player is randomly selected as proposer, with player i being selected with 

probability 1 / n . 

2. The proposer makes a proposal x X∈ . 

3. All the other players simultaneously respond by saying “Yes” or “No” to the 

proposal. 

4. If each of them accepts the proposal, the game ends. Otherwise, the process 

moves to round s +1. 

5. If x X∈  is accepted in period s , player i ’s payoff is given by δ   s
iu x−1 ( ) , 

( )δ ∈ 0 1,  , that is, all players discount their future payoffs by a common 

discount factor. If no alternative is ever accepted, each player receives a utility 

of zero. 

We assume that every player knows the rules of the game and has perfect information about the history of the game play whenever he makes a decision. In this game a stationar

stationary equilibrium is a collection of sta tionary strategies such that there is no 
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history at which a player benefits from a deviation from his prescribed strategy. 

 The Central Result  

The assumption that players’ utility functions are concave is weaker that of strictly concavity of these functi

concave rather than strictly concave.  

 Proposition. In the above bargaining game, there exists a stationary  equilibrium. 

Proof . For some { }i n∈ 1, ,K  and ( , , , , , , )x x x x x Xi i n
n

1 2 1 1
1K K− +

−∈ , let us consider the following maximization problem

 max ( )
x X iu x
∈

   

 s. t. u j (

Let us study in detail the set of maximizers of the problem. First of all, show that for 

any ( , , , , , , )x x x x x Xi i n
n

1 2 1 1
1K K− +

−∈  the system of inequalities (3.1) is 

compatible. Consider the following set  

K x x x xi i i n( , , , , , )1 1 1K K− + =

= ∈ − ≥ +






∈ − =

−

= +
∑ ∑x X n u x n u x u x

j N i
j j l

l

i

j l
l i

n

: ( / ) ( ) / ( ( (1
1

1

1

δ δ   )  ) )I

= ∈
−

≥ +






∈ − =

−

= +
∑ ∑x X

n
u x u x u x

j N i
j j l

l

i

j l
l i

n

: ( ) ( ( (
δ

δ
  )  ) )

1

1

1
I . 

Taking into account that δ ∈( , )0 1  and [ ]f R f
n

: , , ( )0 1 → =
−

+ δ
δ

δ
 is a strictly 

decreasing function, we come to the conclusion that the following inclusion holds: 

K x x x xi i i n( , , , , , )1 1 1K K− + ⊇  
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M x X n u x u x u x
j N i

j j l
l

i

j l
l i

n

= ∈ − ≥ +






∈ − =

−

= +
∑ ∑: ( ) ( ) ( ( (1

1

1

1

  )  ) )I . 

Since u X R i ni: , , ,→ =+ 1 K , are concave function, the set M contains the point 

x
n

x xl
l

i

l
l i

n

* (=
−

+
=

−

= +
∑ ∑1

1 1

1

1

  ) . Therefore, the set K x x x xi i i n( , , , , , )1 1 1K K− + is a non-

empty convex compact set and, as a result, X x x x xi i i n( , , , , , )1 1 1K K− + , the set of 

elements of X being a solution of the optimization problem max ( )
( , , , , , )

u xi
x K x x x xi i i n∈ − +1 1 1K K

, is a 

non-empty convex compact subset of X  (the set of maximizers of a concave 

function on a convex set is a convex set). In order to invoke the Kakutani fixed 

point theorem, we need to prove that X Xi
n X: − →1 2  is upper semicontinuos. Its 

semicontinuity is proved in the section “Upper Semicontinuity of Auxiliary Set-

Valued Maps.” 

Further our reasoning is simil ar to that of Glicksberg (1952, p.173). Let us consider the following set

 

x

x

x

X x x x

X x x x

X x x xn

n

n

n n

1

2

1 2 3

2 1 3

1 2 1

M

K

K

M

K



















→



















−

( , , , )

( , , , )

( , , , )

. 

The set X n  is convex compact, values of X0  are non-empty convex compact 

subsets of X n , X 0  is upper semicontinuous on X n , by virtue of the Kakutani fixed 

point theorem, there exists a fixed point x x x x Xn
n* * * *( , , , )= ∈1 2 K  of the map 
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( ( ))* *x X x∈ 0 .  

 Let us define the following stationary strategy Si
*  for player i : 

A) If player i proposes, he proposes x i
* ; 

B) If player i  responds to some ongoing proposal x made by player j N i∈ − , he 

accepts the proposal if u x
n

u x u x u xi i l
l

i

i i l
l i

n

( ) ( ( ( ) (* *≥ + +
=

−

= +
∑ ∑δ   )  ) ) 

1

1

1

 and rejects 

it otherwise. 

On the basis of the above proved, the strategy profile ( , , , )* * *S S Sn1 2 K  constitutes a stationary equilibrium. Studying the subgame perfectness of one of the stationary equilibria determined as a fixed point of the corresponding set

concave utility functions) is a complicated problem lying outside the scope of the 

thesis. Q.E.D.  

 

Upper Semicontinuity of Auxiliary Set-Valued Maps  

In order to show that X x x x x Xi i i n
n X( , , , , , ):1 1 1

1 2K K− +
− → is upper semicontinuous, let us introduce the marginal function of the above maximization problem 

u x x x xi i i n( , , , , , )1 1 1K K− + = max ( )
( , , , , , )

u xi
x K x x x xi i i n∈ − +1 1 1K K

. Then  

 X x x x xi i i n( , , , , , )1 1 1K K− + =  

 { }x K x x x x u x x x x u xi i i n i i i n i∈ =− + − +( , , , , , ): ( , , , , , ) ( )1 1 1 1 1 1K K K K  

In order to prove that X Xi
n X: − →1 2  is upper semicontinuous, it suffices to show 

that K i  is a continuous set-valued map with compact values (Aubin and Cellina, 
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1984, Theorem 6, p.53). Note that in this case, the marginal function ui is 

continuous as well. Recall that K Xi
n X: − →1 2  is determined as follows: 

K x x x x x X
n

u x u x u x
j N i

i i i n j j l
l

i

j l
l i

n

( , , , , , ) : ( ) ( ( (1 1 1
1

1

1

K K I− +
=

−

= +
= ∈

−
≥ +







∈ −

∑ ∑δ
δ

  )  ) )

, 

The proof of the set-valued map’s continuity consists of two steps. Firstly, it is 

necessary to show that L XJ
n X: − →1 2 , 

L x x x x x X
n

u x u x u xj i i n j j l
l

i

j l
l i

n

( , , , , , ) : ( ) ( ( (1 1 1
1

1

1

K K− +
=

−

= +
= ∈ − ≥ +









∑ ∑δ
δ

  )  ) ) , 

j N i∈ −   

is continuous. Since the function u j  is continuous on X , L j  has a closed graph 

and its values lie in the compact set X , so L j  is upper semicontinuous on X n−1  

(Aubin and Cellina, 1984, Corollary 1, p. 42). The proof of the lower semicontinuity 

of L j  on X n−1  is more complicated. Let us consider a sequence 

{ }( , , , , , )x x x xm
i
m

i
m

n
m

m1 1 1 1
K K− + =

∞
 converging to ( , , , , , )x x x xi i n1 1 1K K− +  and choose 

some z L x x x xj i i n∈ − +( , , , , , )1 1 1K K . It is necessary to show that there exists a 

sequence { }z m , z L x x x xm
j

m
i
m

i
m

n
m∈ − +( , , , , , )1 1 1K K  converging to z . Consider the 

sequence { }z m , z z y zm

y L x x x xj
m

i
m

i
m

n
m

− = −
∈ − +

min
( , , , , , )1 1 1K K

. Taking into account that 

L x x x xj i i n( , , , , , )1 1 1K K− +  is a convex compact set for each 
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( , , , , , )x x x x Xi i n
n

1 1 1
1K K− +

−∈ , the projection of the point z  on the set 

L x x x xj
m

i
m

i
m

n
m( , , , , , )1 1 1K K− +  is determined in a unique manner (Aubin, 1984, 

Theorem 2.3). Let us show that { }z m , z L x x x xm
j

m
i
m

i
m

n
m∈ − +( , , , , , )1 1 1K K  

determined in the above way converges to z . By contradiction, assume that there is 

a subsequence of { }z m  converging to z z* ≠ . In this case, for simplicity of our 

notation, without loss of generality, we can assume that all the sequence { }z m  

converges to z z* ≠ . Since L j  is upper semicontinuous on X , 

z L x x x xj i i n
* ( , , , , , )∈ − +1 1 1K K . The fact that the sequence { }z m  converges to z*  

implies that there exists ε > 0  such that z B zm k∉ ε ( ) , m = 12, ,K  , where 

{ }B z y R y zk k
ε ε( ) := ∈ − ≤ . Then  

B z L x x x xk
j

m
i
m

i
m

n
m

ε ( ) ( , , , , , )I K K1 1 1− + = ∅ , m = 12, ,K .   

 Let us show that in this case the point z is a local maximizer of u j  on Bk z Xε ( )I , 

that is, z u x
x B z X

j
k

∈
∈
argmax ( )

( )ε I
. By contradiction, assume that there exists 

z Bk z X z z1 1∈ ≠ε ( ) ,I   such that u z u zj j( ) ( )1 > . Taking into account that  

n
u z u x u x

n
u z u x u xj j l

m

l

i

j l
m

l i

n

j j l
l

i

j l
l i

n−
< +

−
≥ +

=

−

= + =

−

= +
∑ ∑ ∑ ∑δ

δ
δ

δ
( ) ( ( ( , ( ) ( ( ( ,  )  ) )    )  ) )

1

1

1 1

1

1
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we come to the conclusion that  

n
u z u x u x

n
u zj j l

l

i

j l
l i

n

j
− = + −

=

−

= +
∑ ∑δ

δ
δ

δ
( ) ( ( ( ( )  )  ) ) <

1

1

1
1  

and beginning with some number N1  the following inequality holds 

n
u z u x u xj j l

m

l

i

j l
m

l i

n−
> +

=

−

= +
∑ ∑δ

δ
( ) ( ( (1

1

1

1

  )  ) ) , m N N= +1 1 1, ,K . 

Therefore, z B z L x x x xk
j

m
i
m

i
m

n
m

1 1 1 1∈ − +ε ( ) ( , , , , , )I K K , which contradicts (3.2). 

Having proved that  z is a local maximizer of u j  on Bk z Xε ( )I , by invoking the 

fact that the function u j  is concave on X , we can conclude that z  is a global 

maximizer of u j  on X . So z L x x x xj
m

i
m

i
m

n
m∈ − +( , , , , , )1 1 1K K , m = 1 2, ,K ,  which 

contradicts to (3.2). The obtained contradiction proves that the above sequence 

{ }z m  converges to z  and the lower semicontinuity of L j  at the point 

( , , , , , )x x x x Xi i n
n

1 1 1
1K K− +

−∈ .  

Let us come back to proving the continuity of Ki  on X n−1 . The map is upper semicontinuous on X

 K x x x x L x x x x
j N i

i i i n j i i n( , , , , , ) ( , , , , , )1 1 1 1 1 1K K K KI− + − +=
∈ −

. 

The simplest general condition guaranteeing that the intersection of two lower 

semicontinuous convex-valued maps F  and G  acting from a metric space V to R m  

is lower semicontinuous in v V0 ∈  can be written as follows (Aubin and 
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Frankowska, 1990, Proposition 1.5.1, p. 49,; Chikrii and Prokopovich, 1995,  

Theorem 1, p. 99):  

 0 0 0∈ −int( ( ) ( ))F v G v , 

where int A  denotes the interior of the set A . 

In particular, in order to prove lower semicontinuity of Ki  on X n−1 , it is enough to 

show that for any ( , , , , )x x x xi i n1 1 1K K− + there exists  

z L x x x xj i i n∈ − +int ( , , , , , )1 1 1K K , j i i n= − +1 1 1, , , , ,K K    

As it was noted above, the point x
n

x xl
l

i

l
l i

n

* (=
−

+
=

−

= +
∑ ∑1

1 1

1

1

  )  belongs to L x x x xj i i( , , , , ,1 1 1K K− +

that u j  is a continuous function and [ ]f R f
n

: , , ( )0 1 → =
−

+ δ
δ

δ
 is a strictly 

decreasing function, we come to the conclusion that there exists ε j > 0  such that 

B x X L x x x x
j

k
j i i nε ( ) ( , , , , , )* I K K⊂ − +1 1 1 . Let { }ε ε ε ε ε* min , , , , ,= − +1 1 1K Ki i n . 

Then B x X L x x x xk
j i i nε* ( ) ( , , , , , )* I K K⊂ − +1 1 1 , j i i n= − +1 1 1, , , , ,K K . Note 

that int( ( ) )* *B x Xk
ε I ≠ ∅  and int( ( ) ) int ( , , , , , )* *B x X L x x x xk

j i i nε I K K⊂ − +1 1 1 , 

j i i n= − +1 1 1, , , , ,K K . Therefore, a z  such that inclusions (3.3) hold exists and 

K i  is lower semicontinuous at the point ( , , , , )x x x x Xi i n
n

1 1 1
1K K− +

−∈ . Since K i  

is both lower and upper semicontinuous on X n−1 , we conclude that Ki  is 

continuous on X n−1  and X Xi
n X: − →1 2  is an upper semicontinuous set-valued 
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map with non-empty convex compact values. 
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C h a p t e r  4  

CONCLUSIONS 

NATO expansion is currently the centerpiece of U.S. security policy toward Europe. 

Of late, the Alliance has reaffirmed that the door to new members remains open and 

enhanced practical military cooperation and political dialogue with those countries 

who seek membership. Ukraine as a partner in the Partnership for Peace (PfP) 

program has developed a new security relationship with the Alliance members and 

other PfP partners. Moreover, NATO and Ukraine have strengthened their 

distinctive partnership recently. But costs of expansion of NATO are large. New 

NATO members would have to devote enormous funds to buy modern weapons 

and communication systems compatible with those used by the Western countries 

(an increase of 60 to 80 percent over current military expenditures). At the same 

time, alliance formation depends on whether prospective members consider their 

membership as providing net gains. In Chapter 2 of this work, we analyze the cost 

and benefits to Ukraine connected with joining NATO. On the basis of applying 

Gardner’s idea (1995) concerning studying mutual defense games within the 

cooperative game theory framework, the benefits to Ukraine from forming an 

alliance with a number of her neighbor countries are investigated. Studying the 

auxiliary cooperative mutual defense games is of theoretical interest on its own. 
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After that, some relevant issues of NATO expansion are raised and explored. A 

“NATO-Slovakia-Ukraine” model is proposed and the set of its cooperative 

solutions is determined. It is shown that although in the short run the burden of the 

NATO expansion is divided unequally among the three players, the long -run cost 

savings for them from the NATO expansion will be to a considerable extent 

equalized.  

 Owing to the close connection between the core of a coalitional game and the 

set of stationary subgame perfect equilibrium payoffs of the corresponding 

bargaining game, the problem of nonemptiness of the core can often be interpreted 

as the problem of existence of a stationary subgame perfect equilibrium in the 

corresponding bargaining game. In Chapter 3, the problem of existence of a 

stationary equilibrium in a unanimous bargaining game with the random selection of 

proposers is studied. In this game, the conventional assumption of the strict 

concavity of players’ utility functions is replaced with that of their concavity. The 

proof of the existence of a stationary equilibrium is based on invoking the Kakutani 

fixed point theorem. In order to make it possible, upper semicontinuity of a number 

of auxiliary set-valued maps is investigated. Thus, within the framework of the 

original approach to formalizing n -person bargaining proposed by the author, 

invoking the Kakutani fixed point theorem is thoroughly substantiated.     
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MATHEMATICAL APPENDIX 

 

We give in this section a number of definitions and assertions which are used in 

Chapter 3. In what follows X  and Y  Hausdorff topological spaces. Let F  be a set-

valued map with non-empty values.  

Definition 1. We say that F  is upper semicontinuos at x X0 ∈  if for any open 

neighborhood N  containing F x( )0  there exists a neighborhood M  of x0  such that 

F M N( ) ⊂ .  

 We say that F  is upper semicontinuous if it is so at every x X0 ∈ .  

Proposition 1 (Aubin and Cellina, 1984, Corollary 1, p. 42). Let G  be a set-valued 

map from X  to a compact space Y  whose graph is closed. Then G  is upper 

semicontinuous. 

Proposition 2 (Aubin and Cellina, 1984, Theorem 1, p. 41). Let F  and G  be two 

set-valued maps from X  to Y  such that, ∀ ∈ ≠ ∅x X F x G x, ( ) ( ) .I  We 

suppose that:  

i) F  is upper semicontinuous at x0 , 

ii) F x( )0  is compact, 

iii) the graph of G  is closed. 

Then the set -valued map F G x F x G xI I: ( ) ( )→  is upper semicontinuous at 
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x0 . 

Definition 2. We say that F  is lower semicontinuous at x X0 ∈  if for any 

y F x0 0∈ ( )  and any neighborhood N y( )0  of y 0 , there exists a neighborhood 

N x( )0  of x 0  such that  

 ∀ ∈ ≠ ∅x N x F x N y( ), ( ) ( )0 0  I . 

We say that F  is lower semicontinuous if it is lower semicontinuous at every 

x X0 ∈ . 

 The above definition could be phrased as follows: given any generalized 

sequence xµ  converging to x 0  and any y F x0 0∈ ( ) , there exists a generalized 

sequence y F xµ µ∈ ( )  that converges to y 0 . When X  and Y  are metric, this 

last characterization holds true with usual (i.e., countable) sequences. 

Definition 3. A set valued map F  from X  to Y  is said to be continuous at 

x X0 ∈  if it is both upper semicontinuous and lower semicontinuous at x0 . It 

is said to be continuous if it is continuous at every point x X∈ . 

 Let G  be a set-valued map from Y  to X  and W  be a real-valued function 

defined on X Y× . We consider the family of maximization problems  

 V y W x y
x G y

( ) sup ( , )
( )

=
∈

, 

which depend upon the parameter y . The function V  is called the marginal 
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function and the set-valued map M  associating to the parameter y Y∈  the set  

 { }M y x G y V y W x y( ) ( ): ( ) ( , )= ∈ =  

of solutions to the maximization problem V y( )  is called the marginal map. 

Proposition 3 (Aubin and Cellina, 1984, Theorem 6, p.53). Suppose that 

i) W  is continuous on X Y× , 

ii) G  is continuous with compact values. 

Then the marginal function V  is continuous and the marginal set-valued map 

M  is upper semicontinuous. 

Proposition 4 (Aubin and Frankowska, 1990, Proposition 1.5.1, p.49). 

Consider a metric space X , two normed spaces Y  and Z , two set-valued 

maps G  and F  from X  to Y  and Z  respectively, and a single-valued map f  

from X Z×  to Y  satisfying the following assumptions: 

i) G  and F  are lower semicontinuous with convex values; 

ii) f  is continuous; 

iii) ∀ ∈x X , u f x ua ( , )  is affine. 

We posit the following condition: 

∀ ∈ ∃ > > > >x X c r, , , ,    γ δ0 0 0 0  such that ∀ ∈x B x' ( , )δ  we have  

 γ  B f x F x rB G xZ⊂ −( ' , ( ' ) ) ( ')I . 

Then the set-valued map R X Z: → 2  defined by 
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 { }R x u F x f x u G x( ) ( ): ( , ) ( )= ∈ ∈  

is lower semicontinuous with nonempty convex values. 

 

Proposition 5 (Chikrii and Prokopovich, 1995, Theorem 1, p. 99) . Let us consider 

a metric space V  and set-valued maps F  and G  from V  to Rk  with convex 

values such that  

i) F  and G  is lower semicontinuous at v V0 ∈ ; 

ii) 0 0 0∈ −int( ( ) ( ))F v G v . 

Then the set-valued map C V R k

: → 2 , C v F v G v( ) ( ) ( )= I  is lower 

semicontinuous at v0 . 
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