

Introduction to Data Analytics and Artificial Intelligence

The objective of the course is to learn analytical models and overview quantitative algorithms for solving data-driven and business problems. We will show how various data science and analytics techniques such as basic statistics, regressions, uncertainty modeling, simulation and optimization modeling, data mining and machine learning, text analytics, artificial intelligence, and visualizations can be implemented and applied using Python. Python and IBM Watson Analytics are modeling and visualization software used in this course.

The course consists of three phases: study sessions, project preparation, and project defense.

Contact person: Olga Nagorniuk

+380 67 434 71 93, onagorniuk@kse.org.ua

Lecturer: Oleksandr Romanko Senior Research Analyst Risk Analytics, Watson Financial Services, IBM, Toronto, ON, Canada

In 2010 Oleksandr obtained a Ph.D. degree in Computer Science at the McMaster University, Hamilton, ON, Canada. Currently he works as an adjunct professor at the University of Toronto. Additionally, as a senior research analyst, Oleksandr conducts research on risk management, financial modeling and optimization; develop, implement and test risk management, portfolio optimization and insurance models.

In 2014 he received an IBM Outstanding Technical Achievement Award. And in 2012 - an Eminence and Excellence IBM Award to Quantitative Research Group Members of IBM Risk Analytics.

Preliminary Course Outline

Day 1 - Friday (9:00-20:00)

Lecture 1: Introduction to data science and analytics Data science concepts Application areas of quantitative modeling

Lecture 2: Python programming, data science software Introduction to Python Comparison of Python, R and Matlab usage in data science

Lecture 3: Basic statistics

Lecture 4: Overview of mathematics and linear algebra Linear algebra and matrix computations Functions, derivatives, convexity

Day 2 - Saturday (9:00-20:00)

Lecture 1: Optimization

Lecture 2 and 3: Modeling
techniques, regression
Mathematical modeling process
Linear regression
Logistic regression
Regression case studies in
IPython

Lecture 4: Simulation modeling
Random number generation
Monte Carlo simulations
Simulation case studies in
IPython

Lecture 5: Data visualization and visual analytics

Day 3 - Sunday (9:00-20:00)

Lecture 1 and 2: Data mining and machine learning
Classification (decision trees)
Clustering (K-means, Fuzzy C-means, Hierarchical Clustering, DBSCAN)
Association rules
Intro to advanced supervised machine learning algorithms
(Naive Bayes, k-NN, SVM)
Data mining case studies in IPython

Lecture 3 and 4: Cognitive computing and artificial intelligence

Lecture 5: Storytelling based on analytics, analytical decision making Validating analytics Storytelling based on analytics Decision-making based on analytics